Documentation

Mathlib.GroupTheory.RegularWreathProduct

Regular wreath product #

This file defines the regular wreath product of groups, and the canonical maps in and out of the product. The regular wreath product of D and Q is the product (Q → D) × Q with the group operation ⟨a₁, a₂⟩ * ⟨b₁, b₂⟩ = ⟨a₁ * (fun x ↦ b₁ (a₂⁻¹ * x)), a₂ * b₂⟩.

Main definitions #

Notation #

This file introduces the global notation D ≀ᵣ Q for RegularWreathProduct D Q.

Tags #

group, regular wreath product, sylow p-subgroup

structure RegularWreathProduct (D : Type u_1) (Q : Type u_2) :
Type (max u_1 u_2)

The regular wreath product of groups Q and D. It is the product (Q → D) × Q with the group operation ⟨a₁, a₂⟩ * ⟨b₁, b₂⟩ = ⟨a₁ * (fun x ↦ b₁ (a₂⁻¹ * x)), a₂ * b₂⟩.

  • left : QD

    The function of Q → D

  • right : Q

    The element of Q

Instances For
    theorem RegularWreathProduct.ext_iff {D : Type u_1} {Q : Type u_2} {x y : D ≀ᵣ Q} :
    x = y x.left = y.left x.right = y.right
    theorem RegularWreathProduct.ext {D : Type u_1} {Q : Type u_2} {x y : D ≀ᵣ Q} (left : x.left = y.left) (right : x.right = y.right) :
    x = y

    The regular wreath product of groups Q and D. It is the product (Q → D) × Q with the group operation ⟨a₁, a₂⟩ * ⟨b₁, b₂⟩ = ⟨a₁ * (fun x ↦ b₁ (a₂⁻¹ * x)), a₂ * b₂⟩.

    Equations
      Instances For
        instance RegularWreathProduct.instMul {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
        Mul (D ≀ᵣ Q)
        Equations
          theorem RegularWreathProduct.mul_def {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] (a b : D ≀ᵣ Q) :
          a * b = { left := a.left * fun (x : Q) => b.left (a.right⁻¹ * x), right := a.right * b.right }
          @[simp]
          theorem RegularWreathProduct.mul_left {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] (a b : D ≀ᵣ Q) :
          (a * b).left = a.left * fun (x : Q) => b.left (a.right⁻¹ * x)
          @[simp]
          theorem RegularWreathProduct.mul_right {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] (a b : D ≀ᵣ Q) :
          (a * b).right = a.right * b.right
          instance RegularWreathProduct.instOne {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
          One (D ≀ᵣ Q)
          Equations
            @[simp]
            theorem RegularWreathProduct.one_left {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
            left 1 = 1
            @[simp]
            theorem RegularWreathProduct.one_right {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
            right 1 = 1
            instance RegularWreathProduct.instInv {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
            Inv (D ≀ᵣ Q)
            Equations
              @[simp]
              theorem RegularWreathProduct.inv_left {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] (a : D ≀ᵣ Q) :
              a⁻¹.left = fun (x : Q) => a.left⁻¹ (a.right * x)
              @[simp]
              theorem RegularWreathProduct.inv_right {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] (a : D ≀ᵣ Q) :
              instance RegularWreathProduct.instGroup {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
              Equations
                instance RegularWreathProduct.instInhabited {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
                Equations
                  def RegularWreathProduct.rightHom {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
                  D ≀ᵣ Q →* Q

                  The canonical projection map D ≀ᵣ Q →* Q, as a group hom.

                  Equations
                    Instances For
                      def RegularWreathProduct.inl {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
                      Q →* D ≀ᵣ Q

                      The canonical map Q →* D ≀ᵣ Q sending q to ⟨1, q⟩

                      Equations
                        Instances For
                          @[simp]
                          theorem RegularWreathProduct.left_inl {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] (q : Q) :
                          (inl q).left = 1
                          @[simp]
                          theorem RegularWreathProduct.right_inl {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] (q : Q) :
                          (inl q).right = q
                          @[simp]
                          theorem RegularWreathProduct.rightHom_eq_right {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] :
                          @[simp]
                          theorem RegularWreathProduct.fun_id {D : Type u_1} {Q : Type u_2} [Group D] [Group Q] (q : Q) :
                          rightHom (inl q) = q
                          def RegularWreathProduct.equivProd (D : Type u_3) (Q : Type u_4) :
                          D ≀ᵣ Q (QD) × Q

                          The equivalence map for the representation as a product.

                          Equations
                            Instances For
                              instance RegularWreathProduct.instFinite {D : Type u_1} {Q : Type u_2} [Finite D] [Finite Q] :
                              def RegularWreathProduct.congr {D₁ : Type u_3} {Q₁ : Type u_4} {D₂ : Type u_5} {Q₂ : Type u_6} [Group D₁] [Group Q₁] [Group D₂] [Group Q₂] (f : D₁ ≃* D₂) (g : Q₁ ≃* Q₂) :
                              D₁ ≀ᵣ Q₁ ≃* D₂ ≀ᵣ Q₂

                              Define an isomorphism from D₁ ≀ᵣ Q₁ to D₂ ≀ᵣ Q₂ given isomorphisms D₁ ≀ᵣ Q₁ and Q₁ ≃* Q₂.

                              Equations
                                Instances For
                                  instance RegularWreathProduct.instSMulProd (D : Type u_1) (Q : Type u_2) [Group D] [Group Q] (Λ : Type u_3) [MulAction D Λ] :
                                  SMul (D ≀ᵣ Q) (Λ × Q)
                                  Equations
                                    @[simp]
                                    theorem RegularWreathProduct.smul_def (D : Type u_1) (Q : Type u_2) [Group D] [Group Q] (Λ : Type u_3) [MulAction D Λ] {w : D ≀ᵣ Q} {p : Λ × Q} :
                                    w p = (w.left (w.right * p.2) p.1, w.right * p.2)
                                    instance RegularWreathProduct.instMulActionProd (D : Type u_1) (Q : Type u_2) [Group D] [Group Q] (Λ : Type u_3) [MulAction D Λ] :
                                    MulAction (D ≀ᵣ Q) (Λ × Q)
                                    Equations
                                      instance RegularWreathProduct.instFaithfulSMulProdOfNonempty (D : Type u_1) (Q : Type u_2) [Group D] [Group Q] (Λ : Type u_3) [MulAction D Λ] [FaithfulSMul D Λ] [Nonempty Q] [Nonempty Λ] :
                                      FaithfulSMul (D ≀ᵣ Q) (Λ × Q)
                                      def RegularWreathProduct.toPerm (D : Type u_1) (Q : Type u_2) [Group D] [Group Q] (Λ : Type u_3) [MulAction D Λ] :

                                      The map sending the wreath product D ≀ᵣ Q to its representation as a permutation of Λ × Q given D-set Λ.

                                      Equations
                                        Instances For
                                          theorem RegularWreathProduct.toPermInj (D : Type u_1) (Q : Type u_2) [Group D] [Group Q] (Λ : Type u_3) [MulAction D Λ] [FaithfulSMul D Λ] [Nonempty Λ] :
                                          def IteratedWreathProduct (G : Type u) (n : ) :

                                          The wreath product of group G iterated n times.

                                          Equations
                                            Instances For

                                              The homomorphism from IteratedWreathProduct G n to Perm (Fin n → G).

                                              Equations
                                                Instances For
                                                  noncomputable def Sylow.mulEquivIteratedWreathProduct (p : ) [hp : Fact (Nat.Prime p)] (n : ) (α : Type u_3) [Finite α] ( : Nat.card α = p ^ n) (G : Type u_4) [Group G] [Finite G] (hG : Nat.card G = p) (P : Sylow p (Equiv.Perm α)) :

                                                  The encoding of the Sylow p-subgroups of Perm α as an iterated wreath product.

                                                  Equations
                                                    Instances For