Documentation

Mathlib.LinearAlgebra.CliffordAlgebra.EvenEquiv

Isomorphisms with the even subalgebra of a Clifford algebra #

This file provides some notable isomorphisms regarding the even subalgebra, CliffordAlgebra.even.

Main definitions #

Main results #

Constructions needed for CliffordAlgebra.equivEven #

@[reducible, inline]
abbrev CliffordAlgebra.EquivEven.Q' {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :

The quadratic form on the augmented vector space M × R sending v + r•e0 to Q v - r^2.

Equations
    Instances For
      theorem CliffordAlgebra.EquivEven.Q'_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M × R) :
      (Q' Q) m = Q m.1 - m.2 * m.2

      The unit vector in the new dimension

      Equations
        Instances For

          The embedding from the existing vector space

          Equations
            Instances For
              theorem CliffordAlgebra.EquivEven.ι_eq_v_add_smul_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) (r : R) :
              (ι (Q' Q)) (m, r) = (v Q) m + r e0 Q
              theorem CliffordAlgebra.EquivEven.e0_mul_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :
              e0 Q * e0 Q = -1
              theorem CliffordAlgebra.EquivEven.v_sq_scalar {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
              (v Q) m * (v Q) m = (algebraMap R (CliffordAlgebra (Q' Q))) (Q m)
              theorem CliffordAlgebra.EquivEven.neg_e0_mul_v {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
              -(e0 Q * (v Q) m) = (v Q) m * e0 Q
              theorem CliffordAlgebra.EquivEven.neg_v_mul_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
              -((v Q) m * e0 Q) = e0 Q * (v Q) m
              @[simp]
              theorem CliffordAlgebra.EquivEven.e0_mul_v_mul_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
              e0 Q * (v Q) m * e0 Q = (v Q) m
              @[simp]
              theorem CliffordAlgebra.EquivEven.reverse_v {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
              reverse ((v Q) m) = (v Q) m
              @[simp]
              theorem CliffordAlgebra.EquivEven.involute_v {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
              involute ((v Q) m) = -(v Q) m
              @[simp]
              theorem CliffordAlgebra.EquivEven.reverse_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :
              reverse (e0 Q) = e0 Q
              @[simp]
              theorem CliffordAlgebra.EquivEven.involute_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :

              The embedding from the smaller algebra into the new larger one.

              Equations
                Instances For
                  theorem CliffordAlgebra.toEven_ι {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
                  ((toEven Q) ((ι Q) m)) = EquivEven.e0 Q * (EquivEven.v Q) m

                  The embedding from the even subalgebra with an extra dimension into the original algebra.

                  Equations
                    Instances For
                      theorem CliffordAlgebra.ofEven_ι {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (x y : M × R) :
                      (ofEven Q) (((even.ι (EquivEven.Q' Q)).bilin x) y) = ((ι Q) x.1 + (algebraMap R (CliffordAlgebra Q)) x.2) * ((ι Q) y.1 - (algebraMap R (CliffordAlgebra Q)) y.2)

                      Any clifford algebra is isomorphic to the even subalgebra of a clifford algebra with an extra dimension (that is, with vector space M × R), with a quadratic form evaluating to -1 on that new basis vector.

                      Equations
                        Instances For
                          theorem CliffordAlgebra.coe_toEven_reverse_involute {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (x : CliffordAlgebra Q) :
                          ((toEven Q) (reverse (involute x))) = reverse ((toEven Q) x)

                          The representation of the clifford conjugate (i.e. the reverse of the involute) in the even subalgebra is just the reverse of the representation.

                          Constructions needed for CliffordAlgebra.evenEquivEvenNeg #

                          def CliffordAlgebra.evenToNeg {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q Q' : QuadraticForm R M) (h : Q' = -Q) :
                          (even Q) →ₐ[R] (even Q')

                          One direction of CliffordAlgebra.evenEquivEvenNeg

                          Equations
                            Instances For
                              @[simp]
                              theorem CliffordAlgebra.evenToNeg_ι {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q Q' : QuadraticForm R M) (h : Q' = -Q) (m₁ m₂ : M) :
                              (evenToNeg Q Q' h) (((even.ι Q).bilin m₁) m₂) = -((even.ι Q').bilin m₁) m₂
                              theorem CliffordAlgebra.evenToNeg_comp_evenToNeg {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q Q' : QuadraticForm R M) (h : Q' = -Q) (h' : Q = -Q') :
                              (evenToNeg Q' Q h').comp (evenToNeg Q Q' h) = AlgHom.id R (even Q)
                              def CliffordAlgebra.evenEquivEvenNeg {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :
                              (even Q) ≃ₐ[R] (even (-Q))

                              The even subalgebras of the algebras with quadratic form Q and -Q are isomorphic.

                              Stated another way, 𝒞ℓ⁺(p,q,r) and 𝒞ℓ⁺(q,p,r) are isomorphic.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem CliffordAlgebra.evenEquivEvenNeg_symm_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (a : (even (-Q))) :
                                  (evenEquivEvenNeg Q).symm a = (evenToNeg (-Q) Q ) a
                                  @[simp]
                                  theorem CliffordAlgebra.evenEquivEvenNeg_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (a : (even Q)) :
                                  (evenEquivEvenNeg Q) a = (evenToNeg Q (-Q) ) a