Documentation

Mathlib.LinearAlgebra.ExteriorPower.Pairing

The pairing between the exterior power of the dual and the exterior power #

We construct the pairing exteriorPower.pairingDual : ⋀[R]^n (Module.Dual R M) →ₗ[R] (Module.Dual R (⋀[R]^n M)).

noncomputable def exteriorPower.toTensorPower (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (n : ) :
(⋀[R]^n M) →ₗ[R] TensorPower R n M

The linear map from the nth exterior power to the nth tensor power obtained by MultilinearMap.alternatization.

Equations
    Instances For
      @[simp]
      theorem exteriorPower.toTensorPower_apply_ιMulti (R : Type u_1) {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {n : } (v : Fin nM) :
      (toTensorPower R M n) ((ιMulti R n) v) = σ : Equiv.Perm (Fin n), Equiv.Perm.sign σ (PiTensorProduct.tprod R) fun (i : Fin n) => v (σ i)
      noncomputable def exteriorPower.alternatingMapToDual (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (n : ) :

      The canonical n-alternating map from the dual of the R-module M to the dual of ⨂[R]^n M.

      Equations
        Instances For
          @[simp]
          theorem exteriorPower.alternatingMapToDual_apply_ιMulti {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {n : } (f : Fin nModule.Dual R M) (v : Fin nM) :
          ((alternatingMapToDual R M n) f) ((ιMulti R n) v) = (Matrix.of fun (i j : Fin n) => (f j) (v i)).det
          noncomputable def exteriorPower.pairingDual (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (n : ) :
          (⋀[R]^n (Module.Dual R M)) →ₗ[R] Module.Dual R (⋀[R]^n M)

          The linear map from the exterior power of the dual to the dual of the exterior power.

          Equations
            Instances For
              @[simp]
              theorem exteriorPower.pairingDual_ιMulti_ιMulti {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {n : } (f : Fin nModule.Dual R M) (v : Fin nM) :
              ((pairingDual R M n) ((ιMulti R n) f)) ((ιMulti R n) v) = (Matrix.of fun (i j : Fin n) => (f j) (v i)).det

              If a R-module M has a family of vectors x : ι → M and linear maps f : ι → M such that f i (x j) is 1 or 0 depending on i = j or i ≠ j, then if ι has a linear order, then a similar property regarding pairingDual R M n applies to the family of vectors indexed by Fin n ↪o ι in ⋀[R]^n M and in ⋀[R]^n (Module.Dual R M) that are obtained by taking exterior products of the x i and the f j. (This shall be used in order to construct a basis of ⋀[R]^n M when M is a free module.)

              theorem exteriorPower.pairingDual_apply_apply_eq_one {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {ι : Type u_3} [LinearOrder ι] (x : ιM) (f : ιModule.Dual R M) (h₁ : ∀ (i : ι), (f i) (x i) = 1) (h₀ : ∀ ⦃i j : ι⦄, i j(f i) (x j) = 0) (n : ) (a : Fin n ↪o ι) :
              ((pairingDual R M n) ((ιMulti R n) (f a))) ((ιMulti R n) (x a)) = 1
              theorem exteriorPower.pairingDual_apply_apply_eq_one_zero {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {ι : Type u_3} [LinearOrder ι] (x : ιM) (f : ιModule.Dual R M) (h₀ : ∀ ⦃i j : ι⦄, i j(f i) (x j) = 0) (n : ) (a b : Fin n ↪o ι) (h : a b) :
              ((pairingDual R M n) ((ιMulti R n) (f a))) ((ιMulti R n) (x b)) = 0