One by one matrices #
This file proves that one by one matrices over a base are equivalent to the base itself under the
canonical map that sends a one by one matrix !![a]
to a
.
Main results #
Tags #
Matrix, Unique, AlgEquiv
@[simp]
theorem
Matrix.uniqueLinearEquiv_symm_apply
{m : Type u_1}
{n : Type u_2}
{A : Type u_3}
{R : Type u_4}
[Unique m]
[Unique n]
[Semiring R]
[AddCommMonoid A]
[Module R A]
(a✝ : A)
:
M₁(A)
and A
are equivalent as rings.
Equations
Instances For
@[simp]
theorem
Matrix.uniqueRingEquiv_symm_apply
{m : Type u_1}
{A : Type u_3}
[Unique m]
[NonUnitalNonAssocSemiring A]
(a : A)
:
@[simp]
theorem
Matrix.uniqueRingEquiv_apply
{m : Type u_1}
{A : Type u_3}
[Unique m]
[NonUnitalNonAssocSemiring A]
(M : Matrix m m A)
:
@[simp]
theorem
Matrix.uniqueAlgEquiv_symm_apply
{m : Type u_1}
{A : Type u_3}
{R : Type u_4}
[Unique m]
[Semiring A]
[CommSemiring R]
[Algebra R A]
(a : A)
:
@[simp]
theorem
Matrix.uniqueAlgEquiv_apply
{m : Type u_1}
{A : Type u_3}
{R : Type u_4}
[Unique m]
[Semiring A]
[CommSemiring R]
[Algebra R A]
(M : Matrix m m A)
: