Documentation

Mathlib.LinearAlgebra.QuadraticForm.Isometry

Isometric linear maps #

Main definitions #

Notation #

Q₁ →qᵢ Q₂ is notation for Q₁.Isometry Q₂.

structure QuadraticMap.Isometry {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] (Q₁ : QuadraticMap R M₁ N) (Q₂ : QuadraticMap R M₂ N) extends M₁ →ₗ[R] M₂ :
Type (max u_3 u_4)

An isometry between two quadratic spaces M₁, Q₁ and M₂, Q₂ over a ring R, is a linear map between M₁ and M₂ that commutes with the quadratic forms.

Instances For

    An isometry between two quadratic spaces M₁, Q₁ and M₂, Q₂ over a ring R, is a linear map between M₁ and M₂ that commutes with the quadratic forms.

    Equations
      Instances For
        instance QuadraticMap.Isometry.instFunLike {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} :
        FunLike (Q₁ →qᵢ Q₂) M₁ M₂
        Equations
          instance QuadraticMap.Isometry.instLinearMapClass {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} :
          LinearMapClass (Q₁ →qᵢ Q₂) R M₁ M₂
          theorem QuadraticMap.Isometry.toLinearMap_injective {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} :
          theorem QuadraticMap.Isometry.ext {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} f g : Q₁ →qᵢ Q₂ (h : ∀ (x : M₁), f x = g x) :
          f = g
          theorem QuadraticMap.Isometry.ext_iff {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} {f g : Q₁ →qᵢ Q₂} :
          f = g ∀ (x : M₁), f x = g x
          def QuadraticMap.Isometry.Simps.apply {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (f : Q₁ →qᵢ Q₂) :
          M₁M₂

          See Note [custom simps projection].

          Equations
            Instances For
              @[simp]
              theorem QuadraticMap.Isometry.map_app {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (f : Q₁ →qᵢ Q₂) (m : M₁) :
              Q₂ (f m) = Q₁ m
              @[simp]
              theorem QuadraticMap.Isometry.coe_toLinearMap {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (f : Q₁ →qᵢ Q₂) :
              f.toLinearMap = f
              def QuadraticMap.Isometry.id {R : Type u_1} {M : Type u_2} {N : Type u_7} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (Q : QuadraticMap R M N) :

              The identity isometry from a quadratic form to itself.

              Equations
                Instances For
                  @[simp]
                  theorem QuadraticMap.Isometry.id_apply {R : Type u_1} {M : Type u_2} {N : Type u_7} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (a : M) :
                  (id Q) a = a
                  def QuadraticMap.Isometry.ofEq {R : Type u_1} {M₁ : Type u_3} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid N] [Module R M₁] [Module R N] {Q₁ Q₂ : QuadraticMap R M₁ N} (h : Q₁ = Q₂) :
                  Q₁ →qᵢ Q₂

                  The identity isometry between equal quadratic forms.

                  Equations
                    Instances For
                      @[simp]
                      theorem QuadraticMap.Isometry.ofEq_apply {R : Type u_1} {M₁ : Type u_3} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid N] [Module R M₁] [Module R N] {Q₁ Q₂ : QuadraticMap R M₁ N} (h : Q₁ = Q₂) (a : M₁) :
                      (ofEq h) a = a
                      @[simp]
                      theorem QuadraticMap.Isometry.ofEq_rfl {R : Type u_1} {M₁ : Type u_3} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid N] [Module R M₁] [Module R N] {Q : QuadraticMap R M₁ N} :
                      ofEq = id Q
                      def QuadraticMap.Isometry.comp {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {M₃ : Type u_5} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R M₃] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} {Q₃ : QuadraticMap R M₃ N} (g : Q₂ →qᵢ Q₃) (f : Q₁ →qᵢ Q₂) :
                      Q₁ →qᵢ Q₃

                      The composition of two isometries between quadratic forms.

                      Equations
                        Instances For
                          @[simp]
                          theorem QuadraticMap.Isometry.comp_apply {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {M₃ : Type u_5} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R M₃] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} {Q₃ : QuadraticMap R M₃ N} (g : Q₂ →qᵢ Q₃) (f : Q₁ →qᵢ Q₂) (x : M₁) :
                          (g.comp f) x = g (f x)
                          @[simp]
                          theorem QuadraticMap.Isometry.toLinearMap_comp {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {M₃ : Type u_5} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R M₃] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} {Q₃ : QuadraticMap R M₃ N} (g : Q₂ →qᵢ Q₃) (f : Q₁ →qᵢ Q₂) :
                          @[simp]
                          theorem QuadraticMap.Isometry.id_comp {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (f : Q₁ →qᵢ Q₂) :
                          (id Q₂).comp f = f
                          @[simp]
                          theorem QuadraticMap.Isometry.comp_id {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (f : Q₁ →qᵢ Q₂) :
                          f.comp (id Q₁) = f
                          theorem QuadraticMap.Isometry.comp_assoc {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {M₃ : Type u_5} {M₄ : Type u_6} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid M₄] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R M₃] [Module R M₄] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} {Q₃ : QuadraticMap R M₃ N} {Q₄ : QuadraticMap R M₄ N} (h : Q₃ →qᵢ Q₄) (g : Q₂ →qᵢ Q₃) (f : Q₁ →qᵢ Q₂) :
                          (h.comp g).comp f = h.comp (g.comp f)
                          instance QuadraticMap.Isometry.instZeroOfNat {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₂ : QuadraticMap R M₂ N} :
                          Zero (0 →qᵢ Q₂)

                          There is a zero map from any module with the zero form.

                          Equations
                            instance QuadraticMap.Isometry.hasZeroOfSubsingleton {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} [Subsingleton M₁] :
                            Zero (Q₁ →qᵢ Q₂)

                            There is a zero map from the trivial module.

                            Equations
                              instance QuadraticMap.Isometry.instSubsingleton {R : Type u_1} {M₁ : Type u_3} {M₂ : Type u_4} {N : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} [Subsingleton M₂] :
                              Subsingleton (Q₁ →qᵢ Q₂)

                              Maps into the zero module are trivial