Documentation

Mathlib.LinearAlgebra.SymplecticGroup

The Symplectic Group #

This file defines the symplectic group and proves elementary properties.

Main Definitions #

TODO #

def Matrix.J (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] :
Matrix (l l) (l l) R

The matrix defining the canonical skew-symmetric bilinear form.

Equations
    Instances For
      @[simp]
      theorem Matrix.J_transpose (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] :
      (J l R).transpose = -J l R
      theorem Matrix.J_squared (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
      J l R * J l R = -1
      theorem Matrix.J_inv (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
      (J l R)⁻¹ = -J l R
      theorem Matrix.J_det_mul_J_det (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
      (J l R).det * (J l R).det = 1
      theorem Matrix.isUnit_det_J (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
      IsUnit (J l R).det
      def Matrix.symplecticGroup (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
      Submonoid (Matrix (l l) (l l) R)

      The group of symplectic matrices over a ring R.

      Equations
        Instances For
          theorem SymplecticGroup.mem_iff {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] {A : Matrix (l l) (l l) R} :
          instance SymplecticGroup.coeMatrix {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] :
          Coe (↥(Matrix.symplecticGroup l R)) (Matrix (l l) (l l) R)
          Equations
            def SymplecticGroup.symJ (l : Type u_1) (R : Type u_2) [DecidableEq l] [Fintype l] [CommRing R] :

            The canonical skew-symmetric matrix as an element in the symplectic group.

            Equations
              Instances For
                @[simp]
                theorem SymplecticGroup.coe_J {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] :
                (symJ l R) = Matrix.J l R
                theorem SymplecticGroup.neg_mem {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] {A : Matrix (l l) (l l) R} (h : A Matrix.symplecticGroup l R) :
                theorem SymplecticGroup.symplectic_det {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] {A : Matrix (l l) (l l) R} (hA : A Matrix.symplecticGroup l R) :
                theorem SymplecticGroup.mem_iff' {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] {A : Matrix (l l) (l l) R} :
                instance SymplecticGroup.hasInv {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] :
                Equations
                  theorem SymplecticGroup.coe_inv {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] (A : (Matrix.symplecticGroup l R)) :
                  A⁻¹ = -Matrix.J l R * (↑A).transpose * Matrix.J l R
                  theorem SymplecticGroup.inv_left_mul_aux {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] {A : Matrix (l l) (l l) R} (hA : A Matrix.symplecticGroup l R) :
                  -(Matrix.J l R * A.transpose * Matrix.J l R * A) = 1
                  theorem SymplecticGroup.coe_inv' {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] (A : (Matrix.symplecticGroup l R)) :
                  A⁻¹ = (↑A)⁻¹
                  theorem SymplecticGroup.inv_eq_symplectic_inv {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] (A : Matrix (l l) (l l) R) (hA : A Matrix.symplecticGroup l R) :