Documentation

Mathlib.NumberTheory.ArithmeticFunction

Arithmetic Functions and Dirichlet Convolution #

This file defines arithmetic functions, which are functions from to a specified type that map 0 to 0. In the literature, they are often instead defined as functions from ℕ+. These arithmetic functions are endowed with a multiplication, given by Dirichlet convolution, and pointwise addition, to form the Dirichlet ring.

Main Definitions #

Main Results #

Notation #

All notation is localized in the namespace ArithmeticFunction.

The arithmetic functions ζ, σ, ω, Ω and μ have Greek letter names.

In addition, there are separate locales ArithmeticFunction.zeta for ζ, ArithmeticFunction.sigma for σ, ArithmeticFunction.omega for ω, ArithmeticFunction.Omega for Ω, and ArithmeticFunction.Moebius for μ, to allow for selective access to these notations.

The arithmetic function $$n \mapsto \prod_{p \mid n} f(p)$$ is given custom notation ∏ᵖ p ∣ n, f p when applied to n.

Tags #

arithmetic functions, dirichlet convolution, divisors

def ArithmeticFunction (R : Type u_1) [Zero R] :
Type u_1

An arithmetic function is a function from that maps 0 to 0. In the literature, they are often instead defined as functions from ℕ+. Multiplication on ArithmeticFunctions is by Dirichlet convolution.

Equations
    Instances For
      Equations
        @[simp]
        theorem ArithmeticFunction.toFun_eq {R : Type u_1} [Zero R] (f : ArithmeticFunction R) :
        f.toFun = f
        @[simp]
        theorem ArithmeticFunction.coe_mk {R : Type u_1} [Zero R] (f : R) (hf : f 0 = 0) :
        { toFun := f, map_zero' := hf } = f
        @[simp]
        theorem ArithmeticFunction.map_zero {R : Type u_1} [Zero R] {f : ArithmeticFunction R} :
        f 0 = 0
        theorem ArithmeticFunction.coe_inj {R : Type u_1} [Zero R] {f g : ArithmeticFunction R} :
        f = g f = g
        @[simp]
        theorem ArithmeticFunction.zero_apply {R : Type u_1} [Zero R] {x : } :
        0 x = 0
        theorem ArithmeticFunction.ext {R : Type u_1} [Zero R] f g : ArithmeticFunction R (h : ∀ (x : ), f x = g x) :
        f = g
        theorem ArithmeticFunction.ext_iff {R : Type u_1} [Zero R] {f g : ArithmeticFunction R} :
        f = g ∀ (x : ), f x = g x
        instance ArithmeticFunction.one {R : Type u_1} [Zero R] [One R] :
        Equations
          theorem ArithmeticFunction.one_apply {R : Type u_1} [Zero R] [One R] {x : } :
          1 x = if x = 1 then 1 else 0
          @[simp]
          theorem ArithmeticFunction.one_one {R : Type u_1} [Zero R] [One R] :
          1 1 = 1
          @[simp]
          theorem ArithmeticFunction.one_apply_ne {R : Type u_1} [Zero R] [One R] {x : } (h : x 1) :
          1 x = 0

          Coerce an arithmetic function with values in to one with values in R. We cannot inline this in natCoe because it gets unfolded too much.

          Equations
            Instances For
              @[simp]
              theorem ArithmeticFunction.natCoe_apply {R : Type u_1} [AddMonoidWithOne R] {f : ArithmeticFunction } {x : } :
              f x = (f x)

              Coerce an arithmetic function with values in to one with values in R. We cannot inline this in intCoe because it gets unfolded too much.

              Equations
                Instances For
                  @[simp]
                  theorem ArithmeticFunction.intCoe_apply {R : Type u_1} [AddGroupWithOne R] {f : ArithmeticFunction } {x : } :
                  f x = (f x)
                  @[simp]
                  theorem ArithmeticFunction.coe_coe {R : Type u_1} [AddGroupWithOne R] {f : ArithmeticFunction } :
                  f = f
                  @[simp]
                  @[simp]
                  theorem ArithmeticFunction.intCoe_one {R : Type u_1} [AddGroupWithOne R] :
                  1 = 1
                  @[simp]
                  theorem ArithmeticFunction.add_apply {R : Type u_1} [AddMonoid R] {f g : ArithmeticFunction R} {n : } :
                  (f + g) n = f n + g n

                  The Dirichlet convolution of two arithmetic functions f and g is another arithmetic function such that (f * g) n is the sum of f x * g y over all (x,y) such that x * y = n.

                  Equations
                    @[simp]
                    theorem ArithmeticFunction.smul_apply {R : Type u_1} {M : Type u_2} [Zero R] [AddCommMonoid M] [SMul R M] {f : ArithmeticFunction R} {g : ArithmeticFunction M} {n : } :
                    (f g) n = xn.divisorsAntidiagonal, f x.1 g x.2

                    The Dirichlet convolution of two arithmetic functions f and g is another arithmetic function such that (f * g) n is the sum of f x * g y over all (x,y) such that x * y = n.

                    Equations
                      @[simp]
                      theorem ArithmeticFunction.mul_apply {R : Type u_1} [Semiring R] {f g : ArithmeticFunction R} {n : } :
                      (f * g) n = xn.divisorsAntidiagonal, f x.1 * g x.2
                      theorem ArithmeticFunction.mul_apply_one {R : Type u_1} [Semiring R] {f g : ArithmeticFunction R} :
                      (f * g) 1 = f 1 * g 1
                      @[simp]
                      theorem ArithmeticFunction.natCoe_mul {R : Type u_1} [Semiring R] {f g : ArithmeticFunction } :
                      ↑(f * g) = f * g
                      @[simp]
                      theorem ArithmeticFunction.intCoe_mul {R : Type u_1} [Ring R] {f g : ArithmeticFunction } :
                      ↑(f * g) = f * g
                      theorem ArithmeticFunction.mul_smul' {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] (f g : ArithmeticFunction R) (h : ArithmeticFunction M) :
                      (f * g) h = f g h
                      theorem ArithmeticFunction.one_smul' {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] (b : ArithmeticFunction M) :
                      1 b = b

                      ζ 0 = 0, otherwise ζ x = 1. The Dirichlet Series is the Riemann ζ.

                      Equations
                        Instances For

                          ζ 0 = 0, otherwise ζ x = 1. The Dirichlet Series is the Riemann ζ.

                          Equations
                            Instances For

                              ζ 0 = 0, otherwise ζ x = 1. The Dirichlet Series is the Riemann ζ.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem ArithmeticFunction.zeta_apply {x : } :
                                  zeta x = if x = 0 then 0 else 1
                                  theorem ArithmeticFunction.zeta_apply_ne {x : } (h : x 0) :
                                  zeta x = 1
                                  theorem ArithmeticFunction.coe_zeta_smul_apply {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [MulAction R M] {f : ArithmeticFunction M} {x : } :
                                  (zeta f) x = ix.divisors, f i
                                  theorem ArithmeticFunction.coe_zeta_mul_apply {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {x : } :
                                  (zeta * f) x = ix.divisors, f i
                                  theorem ArithmeticFunction.coe_mul_zeta_apply {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {x : } :
                                  (f * zeta) x = ix.divisors, f i

                                  This is the pointwise product of ArithmeticFunctions.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem ArithmeticFunction.pmul_apply {R : Type u_1} [MulZeroClass R] {f g : ArithmeticFunction R} {x : } :
                                      (f.pmul g) x = f x * g x
                                      theorem ArithmeticFunction.pmul_assoc {R : Type u_1} [SemigroupWithZero R] (f₁ f₂ f₃ : ArithmeticFunction R) :
                                      (f₁.pmul f₂).pmul f₃ = f₁.pmul (f₂.pmul f₃)
                                      @[simp]

                                      This is the pointwise power of ArithmeticFunctions.

                                      Equations
                                        Instances For
                                          @[simp]
                                          @[simp]
                                          theorem ArithmeticFunction.ppow_apply {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {k x : } (kpos : 0 < k) :
                                          (f.ppow k) x = f x ^ k
                                          theorem ArithmeticFunction.ppow_succ' {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {k : } :
                                          f.ppow (k + 1) = f.pmul (f.ppow k)
                                          theorem ArithmeticFunction.ppow_succ {R : Type u_1} [Semiring R] {f : ArithmeticFunction R} {k : } {kpos : 0 < k} :
                                          f.ppow (k + 1) = (f.ppow k).pmul f

                                          This is the pointwise division of ArithmeticFunctions.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem ArithmeticFunction.pdiv_apply {R : Type u_1} [GroupWithZero R] (f g : ArithmeticFunction R) (n : ) :
                                              (f.pdiv g) n = f n / g n
                                              @[simp]

                                              This result only holds for DivisionSemirings instead of GroupWithZeros because zeta takes values in ℕ, and hence the coercion requires an AddMonoidWithOne. TODO: Generalise zeta

                                              The map $n \mapsto \prod_{p \mid n} f(p)$ as an arithmetic function

                                              Equations
                                                Instances For

                                                  ∏ᵖ p ∣ n, f p is custom notation for prodPrimeFactors f n

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem ArithmeticFunction.prodPrimeFactors_apply {R : Type u_1} [CommMonoidWithZero R] {f : R} {n : } (hn : n 0) :
                                                      (prodPrimeFactors fun (p : ) => f p) n = pn.primeFactors, f p

                                                      Multiplicative functions

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem ArithmeticFunction.IsMultiplicative.map_mul_of_coprime {R : Type u_1} [MonoidWithZero R] {f : ArithmeticFunction R} (hf : f.IsMultiplicative) {m n : } (h : m.gcd n = 1) :
                                                          f (m * n) = f m * f n
                                                          theorem ArithmeticFunction.IsMultiplicative.map_prod {R : Type u_1} {ι : Type u_2} [CommMonoidWithZero R] (g : ι) {f : ArithmeticFunction R} (hf : f.IsMultiplicative) (s : Finset ι) (hs : (↑s).Pairwise (Function.onFun Nat.Coprime g)) :
                                                          f (∏ is, g i) = is, f (g i)
                                                          theorem ArithmeticFunction.IsMultiplicative.map_prod_of_prime {R : Type u_1} [CommMonoidWithZero R] {f : ArithmeticFunction R} (h_mult : f.IsMultiplicative) (t : Finset ) (ht : pt, Nat.Prime p) :
                                                          f (∏ at, a) = at, f a
                                                          theorem ArithmeticFunction.IsMultiplicative.map_prod_of_subset_primeFactors {R : Type u_1} [CommMonoidWithZero R] {f : ArithmeticFunction R} (h_mult : f.IsMultiplicative) (l : ) (t : Finset ) (ht : t l.primeFactors) :
                                                          f (∏ at, a) = at, f a
                                                          theorem ArithmeticFunction.IsMultiplicative.map_div_of_coprime {R : Type u_1} [GroupWithZero R] {f : ArithmeticFunction R} (hf : f.IsMultiplicative) {l d : } (hdl : d l) (hl : (l / d).Coprime d) (hd : f d 0) :
                                                          f (l / d) = f l / f d

                                                          For any multiplicative function f and any n > 0, we can evaluate f n by evaluating f at p ^ k over the factorization of n

                                                          theorem ArithmeticFunction.IsMultiplicative.iff_ne_zero {R : Type u_1} [MonoidWithZero R] {f : ArithmeticFunction R} :
                                                          f.IsMultiplicative f 1 = 1 ∀ {m n : }, m 0n 0m.Coprime nf (m * n) = f m * f n

                                                          A recapitulation of the definition of multiplicative that is simpler for proofs

                                                          Two multiplicative functions f and g are equal if and only if they agree on prime powers

                                                          theorem ArithmeticFunction.IsMultiplicative.map_gcd {R : Type u_1} [CommGroupWithZero R] {f : ArithmeticFunction R} (hf : f.IsMultiplicative) {x y : } (hf_lcm : f (x.lcm y) 0) :
                                                          f (x.gcd y) = f x * f y / f (x.lcm y)
                                                          theorem ArithmeticFunction.IsMultiplicative.map_lcm {R : Type u_1} [CommGroupWithZero R] {f : ArithmeticFunction R} (hf : f.IsMultiplicative) {x y : } (hf_gcd : f (x.gcd y) 0) :
                                                          f (x.lcm y) = f x * f y / f (x.gcd y)
                                                          theorem ArithmeticFunction.IsMultiplicative.eq_zero_of_squarefree_of_dvd_eq_zero {R : Type u_1} [MonoidWithZero R] {f : ArithmeticFunction R} (hf : f.IsMultiplicative) {m n : } (hn : Squarefree n) (hmn : m n) (h_zero : f m = 0) :
                                                          f n = 0

                                                          The identity on as an ArithmeticFunction.

                                                          Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem ArithmeticFunction.id_apply {x : } :
                                                              id x = x

                                                              pow k n = n ^ k, except pow 0 0 = 0.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem ArithmeticFunction.pow_apply {k n : } :
                                                                  (pow k) n = if k = 0 n = 0 then 0 else n ^ k

                                                                  σ k n is the sum of the kth powers of the divisors of n

                                                                  Equations
                                                                    Instances For

                                                                      σ k n is the sum of the kth powers of the divisors of n

                                                                      Equations
                                                                        Instances For

                                                                          σ k n is the sum of the kth powers of the divisors of n

                                                                          Equations
                                                                            Instances For
                                                                              theorem ArithmeticFunction.sigma_apply {k n : } :
                                                                              (sigma k) n = dn.divisors, d ^ k
                                                                              theorem ArithmeticFunction.sigma_apply_prime_pow {k p i : } (hp : Nat.Prime p) :
                                                                              (sigma k) (p ^ i) = jFinset.range (i + 1), p ^ (j * k)
                                                                              theorem ArithmeticFunction.sigma_one_apply (n : ) :
                                                                              (sigma 1) n = dn.divisors, d
                                                                              theorem ArithmeticFunction.sigma_one_apply_prime_pow {p i : } (hp : Nat.Prime p) :
                                                                              (sigma 1) (p ^ i) = kFinset.range (i + 1), p ^ k

                                                                              Ω n is the number of prime factors of n.

                                                                              Equations
                                                                                Instances For

                                                                                  Ω n is the number of prime factors of n.

                                                                                  Equations
                                                                                    Instances For

                                                                                      Ω n is the number of prime factors of n.

                                                                                      Equations
                                                                                        Instances For
                                                                                          theorem ArithmeticFunction.cardFactors_mul {m n : } (m0 : m 0) (n0 : n 0) :

                                                                                          ω n is the number of distinct prime factors of n.

                                                                                          Equations
                                                                                            Instances For

                                                                                              ω n is the number of distinct prime factors of n.

                                                                                              Equations
                                                                                                Instances For

                                                                                                  ω n is the number of distinct prime factors of n.

                                                                                                  Equations
                                                                                                    Instances For

                                                                                                      μ is the Möbius function. If n is squarefree with an even number of distinct prime factors, μ n = 1. If n is squarefree with an odd number of distinct prime factors, μ n = -1. If n is not squarefree, μ n = 0.

                                                                                                      Equations
                                                                                                        Instances For

                                                                                                          μ is the Möbius function. If n is squarefree with an even number of distinct prime factors, μ n = 1. If n is squarefree with an odd number of distinct prime factors, μ n = -1. If n is not squarefree, μ n = 0.

                                                                                                          Equations
                                                                                                            Instances For

                                                                                                              μ is the Möbius function. If n is squarefree with an even number of distinct prime factors, μ n = 1. If n is squarefree with an odd number of distinct prime factors, μ n = -1. If n is not squarefree, μ n = 0.

                                                                                                              Equations
                                                                                                                Instances For
                                                                                                                  theorem ArithmeticFunction.moebius_apply_prime_pow {p k : } (hp : Nat.Prime p) (hk : k 0) :
                                                                                                                  moebius (p ^ k) = if k = 1 then -1 else 0

                                                                                                                  A unit in ArithmeticFunction R that evaluates to ζ, with inverse μ.

                                                                                                                  Equations
                                                                                                                    Instances For
                                                                                                                      @[simp]
                                                                                                                      theorem ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq {R : Type u_1} [AddCommGroup R] {f g : R} :
                                                                                                                      (∀ n > 0, in.divisors, f i = g n) n > 0, xn.divisorsAntidiagonal, moebius x.1 g x.2 = f n

                                                                                                                      Möbius inversion for functions to an AddCommGroup.

                                                                                                                      theorem ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq {R : Type u_1} [NonAssocRing R] {f g : R} :
                                                                                                                      (∀ n > 0, in.divisors, f i = g n) n > 0, xn.divisorsAntidiagonal, (moebius x.1) * g x.2 = f n

                                                                                                                      Möbius inversion for functions to a Ring.

                                                                                                                      theorem ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq {R : Type u_1} [CommGroup R] {f g : R} :
                                                                                                                      (∀ n > 0, in.divisors, f i = g n) n > 0, xn.divisorsAntidiagonal, g x.2 ^ moebius x.1 = f n

                                                                                                                      Möbius inversion for functions to a CommGroup.

                                                                                                                      theorem ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_of_nonzero {R : Type u_1} [CommGroupWithZero R] {f g : R} (hf : ∀ (n : ), 0 < nf n 0) (hg : ∀ (n : ), 0 < ng n 0) :
                                                                                                                      (∀ n > 0, in.divisors, f i = g n) n > 0, xn.divisorsAntidiagonal, g x.2 ^ moebius x.1 = f n

                                                                                                                      Möbius inversion for functions to a CommGroupWithZero.

                                                                                                                      theorem ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on {R : Type u_1} [AddCommGroup R] {f g : R} (s : Set ) (hs : ∀ (m n : ), m nn sm s) :
                                                                                                                      (∀ n > 0, n sin.divisors, f i = g n) n > 0, n sxn.divisorsAntidiagonal, moebius x.1 g x.2 = f n

                                                                                                                      Möbius inversion for functions to an AddCommGroup, where the equalities only hold on a well-behaved set.

                                                                                                                      theorem ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on' {R : Type u_1} [AddCommGroup R] {f g : R} (s : Set ) (hs : ∀ (m n : ), m nn sm s) (hs₀ : 0s) :
                                                                                                                      (∀ ns, in.divisors, f i = g n) ns, xn.divisorsAntidiagonal, moebius x.1 g x.2 = f n
                                                                                                                      theorem ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq_on {R : Type u_1} [NonAssocRing R] {f g : R} (s : Set ) (hs : ∀ (m n : ), m nn sm s) :
                                                                                                                      (∀ n > 0, n sin.divisors, f i = g n) n > 0, n sxn.divisorsAntidiagonal, (moebius x.1) * g x.2 = f n

                                                                                                                      Möbius inversion for functions to a Ring, where the equalities only hold on a well-behaved set.

                                                                                                                      theorem ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on {R : Type u_1} [CommGroup R] {f g : R} (s : Set ) (hs : ∀ (m n : ), m nn sm s) :
                                                                                                                      (∀ n > 0, n sin.divisors, f i = g n) n > 0, n sxn.divisorsAntidiagonal, g x.2 ^ moebius x.1 = f n

                                                                                                                      Möbius inversion for functions to a CommGroup, where the equalities only hold on a well-behaved set.

                                                                                                                      theorem ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero {R : Type u_1} [CommGroupWithZero R] (s : Set ) (hs : ∀ (m n : ), m nn sm s) {f g : R} (hf : n > 0, f n 0) (hg : n > 0, g n 0) :
                                                                                                                      (∀ n > 0, n sin.divisors, f i = g n) n > 0, n sxn.divisorsAntidiagonal, g x.2 ^ moebius x.1 = f n

                                                                                                                      Möbius inversion for functions to a CommGroupWithZero, where the equalities only hold on a well-behaved set.

                                                                                                                      theorem Nat.card_divisors {n : } (hn : n 0) :
                                                                                                                      n.divisors.card = xn.primeFactors, (n.factorization x + 1)
                                                                                                                      theorem Nat.sum_divisors {n : } (hn : n 0) :
                                                                                                                      dn.divisors, d = pn.primeFactors, kFinset.range (n.factorization p + 1), p ^ k
                                                                                                                      theorem Nat.Coprime.sum_divisors_mul {m n : } (hmn : m.Coprime n) :
                                                                                                                      d(m * n).divisors, d = (∑ dm.divisors, d) * dn.divisors, d