Documentation

Mathlib.NumberTheory.LegendreSymbol.ZModChar

Quadratic characters on ℤ/nℤ #

This file defines some quadratic characters on the rings ℤ/4ℤ and ℤ/8ℤ.

We set them up to be of type MulChar (ZMod n) ℤ, where n is 4 or 8.

Tags #

quadratic character, zmod

Quadratic characters mod 4 and 8 #

We define the primitive quadratic characters χ₄on ZMod 4 and χ₈, χ₈' on ZMod 8.

Define the nontrivial quadratic character on ZMod 4, χ₄. It corresponds to the extension ℚ(√-1)/ℚ.

Equations
    Instances For
      @[simp]
      theorem ZMod.χ₄_apply (a : ZMod 4) :
      χ₄ a = match a with | 0 => 0 | 2 => 0 | 1 => 1 | 3 => -1

      χ₄ takes values in {0, 1, -1}

      theorem ZMod.χ₄_nat_mod_four (n : ) :
      χ₄ n = χ₄ ↑(n % 4)

      The value of χ₄ n, for n : ℕ, depends only on n % 4.

      theorem ZMod.χ₄_int_mod_four (n : ) :
      χ₄ n = χ₄ ↑(n % 4)

      The value of χ₄ n, for n : ℤ, depends only on n % 4.

      theorem ZMod.χ₄_int_eq_if_mod_four (n : ) :
      χ₄ n = if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1

      An explicit description of χ₄ on integers / naturals

      theorem ZMod.χ₄_nat_eq_if_mod_four (n : ) :
      χ₄ n = if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1
      theorem ZMod.χ₄_eq_neg_one_pow {n : } (hn : n % 2 = 1) :
      χ₄ n = (-1) ^ (n / 2)

      Alternative description of χ₄ n for odd n : ℕ in terms of powers of -1

      theorem ZMod.χ₄_nat_one_mod_four {n : } (hn : n % 4 = 1) :
      χ₄ n = 1

      If n % 4 = 1, then χ₄ n = 1.

      theorem ZMod.χ₄_nat_three_mod_four {n : } (hn : n % 4 = 3) :
      χ₄ n = -1

      If n % 4 = 3, then χ₄ n = -1.

      theorem ZMod.χ₄_int_one_mod_four {n : } (hn : n % 4 = 1) :
      χ₄ n = 1

      If n % 4 = 1, then χ₄ n = 1.

      theorem ZMod.χ₄_int_three_mod_four {n : } (hn : n % 4 = 3) :
      χ₄ n = -1

      If n % 4 = 3, then χ₄ n = -1.

      theorem ZMod.neg_one_pow_div_two_of_one_mod_four {n : } (hn : n % 4 = 1) :
      (-1) ^ (n / 2) = 1

      If n % 4 = 1, then (-1)^(n/2) = 1.

      theorem ZMod.neg_one_pow_div_two_of_three_mod_four {n : } (hn : n % 4 = 3) :
      (-1) ^ (n / 2) = -1

      If n % 4 = 3, then (-1)^(n/2) = -1.

      Define the first primitive quadratic character on ZMod 8, χ₈. It corresponds to the extension ℚ(√2)/ℚ.

      Equations
        Instances For
          @[simp]
          theorem ZMod.χ₈_apply (a : ZMod 8) :
          χ₈ a = match a with | 0 => 0 | 2 => 0 | 4 => 0 | 6 => 0 | 1 => 1 | 7 => 1 | 3 => -1 | 5 => -1

          χ₈ takes values in {0, 1, -1}

          theorem ZMod.χ₈_nat_mod_eight (n : ) :
          χ₈ n = χ₈ ↑(n % 8)

          The value of χ₈ n, for n : ℕ, depends only on n % 8.

          theorem ZMod.χ₈_int_mod_eight (n : ) :
          χ₈ n = χ₈ ↑(n % 8)

          The value of χ₈ n, for n : ℤ, depends only on n % 8.

          theorem ZMod.χ₈_int_eq_if_mod_eight (n : ) :
          χ₈ n = if n % 2 = 0 then 0 else if n % 8 = 1 n % 8 = 7 then 1 else -1

          An explicit description of χ₈ on integers / naturals

          theorem ZMod.χ₈_nat_eq_if_mod_eight (n : ) :
          χ₈ n = if n % 2 = 0 then 0 else if n % 8 = 1 n % 8 = 7 then 1 else -1

          Define the second primitive quadratic character on ZMod 8, χ₈'. It corresponds to the extension ℚ(√-2)/ℚ.

          Equations
            Instances For
              @[simp]
              theorem ZMod.χ₈'_apply (a : ZMod 8) :
              χ₈' a = match a with | 0 => 0 | 2 => 0 | 4 => 0 | 6 => 0 | 1 => 1 | 3 => 1 | 5 => -1 | 7 => -1

              χ₈' takes values in {0, 1, -1}

              theorem ZMod.χ₈'_int_eq_if_mod_eight (n : ) :
              χ₈' n = if n % 2 = 0 then 0 else if n % 8 = 1 n % 8 = 3 then 1 else -1

              An explicit description of χ₈' on integers / naturals

              theorem ZMod.χ₈'_nat_eq_if_mod_eight (n : ) :
              χ₈' n = if n % 2 = 0 then 0 else if n % 8 = 1 n % 8 = 3 then 1 else -1

              The relation between χ₄, χ₈ and χ₈'