Documentation

Mathlib.NumberTheory.NumberField.CanonicalEmbedding.Basic

Canonical embedding of a number field #

The canonical embedding of a number field K of degree n is the ring homomorphism K →+* ℂ^n that sends x ∈ K to (φ_₁(x),...,φ_n(x)) where the φ_i's are the complex embeddings of K. Note that we do not choose an ordering of the embeddings, but instead map K into the type (K →+* ℂ) → ℂ of -vectors indexed by the complex embeddings.

Main definitions and results #

Tags #

number field, infinite places

The canonical embedding of a number field K of degree n into ℂ^n.

Equations
    Instances For
      @[simp]
      theorem NumberField.canonicalEmbedding.apply_at {K : Type u_1} [Field K] (φ : K →+* ) (x : K) :
      (canonicalEmbedding K) x φ = φ x

      The image of canonicalEmbedding lives in the -submodule of the x ∈ ((K →+* ℂ) → ℂ) such that conj x_φ = x_(conj φ) for all ∀ φ : K →+* ℂ.

      theorem NumberField.canonicalEmbedding.norm_le_iff {K : Type u_1} [Field K] [NumberField K] (x : K) (r : ) :
      (canonicalEmbedding K) x r ∀ (φ : K →+* ), φ x r

      The image of 𝓞 K as a subring of ℂ^n.

      Equations
        Instances For

          A -basis of ℂ^n that is also a -basis of the integerLattice.

          Equations
            Instances For
              @[reducible, inline]

              The mixed space ℝ^r₁ × ℂ^r₂ with (r₁, r₂) the signature of K.

              Equations
                Instances For

                  The mixed embedding of a number field K into the mixed space of K.

                  Equations
                    Instances For
                      @[simp]
                      @[deprecated NumberField.mixedEmbedding.mixedEmbedding_apply_isReal (since := "2025-02-28")]

                      Alias of NumberField.mixedEmbedding.mixedEmbedding_apply_isReal.

                      @[deprecated NumberField.mixedEmbedding.mixedEmbedding_apply_isComplex (since := "2025-02-28")]

                      Alias of NumberField.mixedEmbedding.mixedEmbedding_apply_isComplex.

                      The set of points in the mixedSpace that are equal to 0 at a fixed (real) place has volume zero.

                      noncomputable def NumberField.mixedEmbedding.commMap (K : Type u_1) [Field K] :

                      The linear map that makes canonicalEmbedding and mixedEmbedding commute, see commMap_canonical_eq_mixed.

                      Equations
                        Instances For
                          theorem NumberField.mixedEmbedding.commMap_apply_of_isReal (K : Type u_1) [Field K] (x : (K →+* ) → ) {w : InfinitePlace K} (hw : w.IsReal) :
                          ((commMap K) x).1 w, hw = (x w.embedding).re
                          theorem NumberField.mixedEmbedding.commMap_apply_of_isComplex (K : Type u_1) [Field K] (x : (K →+* ) → ) {w : InfinitePlace K} (hw : w.IsComplex) :
                          ((commMap K) x).2 w, hw = x w.embedding

                          This is a technical result to ensure that the image of the -basis of ℂ^n defined in canonicalEmbedding.latticeBasis is a -basis of the mixed space ℝ^r₁ × ℂ^r₂, see mixedEmbedding.latticeBasis.

                          The norm at the infinite place w of an element of the mixed space

                          Equations
                            Instances For
                              theorem NumberField.mixedEmbedding.normAtPlace_real {K : Type u_1} [Field K] (w : InfinitePlace K) (c : ) :
                              (normAtPlace w) (fun (x : { w : InfinitePlace K // w.IsReal }) => c, fun (x : { w : InfinitePlace K // w.IsComplex }) => c) = |c|
                              @[deprecated NumberField.mixedEmbedding.normAtPlace_apply_of_isReal (since := "2025-02-28")]

                              Alias of NumberField.mixedEmbedding.normAtPlace_apply_of_isReal.

                              @[deprecated NumberField.mixedEmbedding.normAtPlace_apply_of_isComplex (since := "2025-02-28")]

                              Alias of NumberField.mixedEmbedding.normAtPlace_apply_of_isComplex.

                              @[simp]

                              The norm of x is ∏ w, (normAtPlace x) ^ mult w. It is defined such that the norm of mixedEmbedding K a for a : K is equal to the absolute value of the norm of a over , see norm_eq_norm.

                              Equations
                                Instances For
                                  @[reducible, inline]

                                  The type indexing the basis stdBasis.

                                  Equations
                                    Instances For

                                      The -basis of the mixed space of K formed by the vector equal to 1 at w and 0 elsewhere for IsReal w and by the couple of vectors equal to 1 (resp. I) at w and 0 elsewhere for IsComplex w.

                                      Equations
                                        Instances For
                                          @[simp]
                                          @[deprecated NumberField.mixedEmbedding.stdBasis_apply_isReal (since := "2025-02-28")]

                                          Alias of NumberField.mixedEmbedding.stdBasis_apply_isReal.

                                          @[deprecated NumberField.mixedEmbedding.stdBasis_apply_isComplex_fst (since := "2025-02-28")]

                                          Alias of NumberField.mixedEmbedding.stdBasis_apply_isComplex_fst.

                                          @[deprecated NumberField.mixedEmbedding.stdBasis_apply_isComplex_snd (since := "2025-02-28")]

                                          Alias of NumberField.mixedEmbedding.stdBasis_apply_isComplex_snd.

                                          The Equiv between index K and K →+* ℂ defined by sending a real infinite place w to the unique corresponding embedding w.embedding, and the pair ⟨w, 0⟩ (resp. ⟨w, 1⟩) for a complex infinite place w to w.embedding (resp. conjugate w.embedding).

                                          Equations
                                            Instances For
                                              @[deprecated NumberField.mixedEmbedding.indexEquiv_apply_isReal (since := "2025-02-28")]

                                              Alias of NumberField.mixedEmbedding.indexEquiv_apply_isReal.

                                              @[deprecated NumberField.mixedEmbedding.indexEquiv_apply_isComplex_fst (since := "2025-02-28")]

                                              Alias of NumberField.mixedEmbedding.indexEquiv_apply_isComplex_fst.

                                              @[deprecated NumberField.mixedEmbedding.indexEquiv_apply_isComplex_snd (since := "2025-02-28")]

                                              Alias of NumberField.mixedEmbedding.indexEquiv_apply_isComplex_snd.

                                              The matrix that gives the representation on stdBasis of the image by commMap of an element x of (K →+* ℂ) → ℂ fixed by the map x_φ ↦ conj x_(conjugate φ), see stdBasis_repr_eq_matrixToStdBasis_mul.

                                              Equations
                                                Instances For
                                                  theorem NumberField.mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul (K : Type u_1) [Field K] [NumberField K] (x : (K →+* ) → ) (hx : ∀ (φ : K →+* ), (starRingEnd ) (x φ) = x (ComplexEmbedding.conjugate φ)) (c : index K) :
                                                  (((stdBasis K).repr ((commMap K) x)) c) = (matrixToStdBasis K).mulVec (x (indexEquiv K)) c

                                                  Let x : (K →+* ℂ) → ℂ such that x_φ = conj x_(conj φ) for all φ : K →+* ℂ, then the representation of commMap K x on stdBasis is given (up to reindexing) by the product of matrixToStdBasis by x.

                                                  @[reducible, inline]

                                                  The image of the ring of integers of K in the mixed space.

                                                  Equations
                                                    Instances For

                                                      A -basis of the mixed space that is also a -basis of the image of 𝓞 K.

                                                      Equations
                                                        Instances For
                                                          @[reducible, inline]

                                                          The image of the fractional ideal I in the mixed space.

                                                          Equations
                                                            Instances For

                                                              The generalized index of the lattice generated by I in the lattice generated by 𝓞 K is equal to the norm of the ideal I. The result is stated in terms of base change determinant and is the translation of NumberField.det_basisOfFractionalIdeal_eq_absNorm in the mixed space. This is useful, in particular, to prove that the family obtained from the -basis of I is actually an -basis of the mixed space, see fractionalIdealLatticeBasis.

                                                              A -basis of the mixed space of K that is also a -basis of the image of the fractional ideal I.

                                                              Equations
                                                                Instances For
                                                                  @[reducible, inline]

                                                                  The mixed space ℝ^r₁ × ℂ^r₂, with (r₁, r₂) the signature of K, as an Euclidean space.

                                                                  Equations
                                                                    Instances For

                                                                      The continuous linear equivalence between the euclidean mixed space and the mixed space.

                                                                      Equations
                                                                        Instances For

                                                                          An orthonormal basis of the euclidean mixed space.

                                                                          Equations
                                                                            Instances For

                                                                              The image of ring of integers 𝓞 K in the euclidean mixed space.

                                                                              Equations
                                                                                Instances For

                                                                                  Let s be a set of real places, define the continuous linear equiv of the mixed space that swaps sign at places in s and leaves the rest unchanged.

                                                                                  Equations
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem NumberField.mixedEmbedding.negAt_apply_isReal_and_mem {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (x : mixedSpace K) {w : { w : InfinitePlace K // w.IsReal }} (hw : w s) :
                                                                                      ((negAt s) x).1 w = -x.1 w
                                                                                      @[simp]
                                                                                      theorem NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (x : mixedSpace K) {w : { w : InfinitePlace K // w.IsReal }} (hw : ws) :
                                                                                      ((negAt s) x).1 w = x.1 w
                                                                                      @[deprecated NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem (since := "2025-05-23")]
                                                                                      theorem NumberField.mixedEmbedding.negAt_apply_isReal_and_not_mem {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (x : mixedSpace K) {w : { w : InfinitePlace K // w.IsReal }} (hw : ws) :
                                                                                      ((negAt s) x).1 w = x.1 w

                                                                                      Alias of NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem.

                                                                                      @[simp]
                                                                                      theorem NumberField.mixedEmbedding.negAt_apply_isComplex {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (x : mixedSpace K) (w : { w : InfinitePlace K // w.IsComplex }) :
                                                                                      ((negAt s) x).2 w = x.2 w
                                                                                      @[deprecated NumberField.mixedEmbedding.negAt_apply_isReal_and_mem (since := "2025-02-28")]
                                                                                      theorem NumberField.mixedEmbedding.negAt_apply_of_isReal_and_mem {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (x : mixedSpace K) {w : { w : InfinitePlace K // w.IsReal }} (hw : w s) :
                                                                                      ((negAt s) x).1 w = -x.1 w

                                                                                      Alias of NumberField.mixedEmbedding.negAt_apply_isReal_and_mem.

                                                                                      @[deprecated NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem (since := "2025-02-28")]
                                                                                      theorem NumberField.mixedEmbedding.negAt_apply_of_isReal_and_not_mem {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (x : mixedSpace K) {w : { w : InfinitePlace K // w.IsReal }} (hw : ws) :
                                                                                      ((negAt s) x).1 w = x.1 w

                                                                                      Alias of NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem.

                                                                                      @[deprecated NumberField.mixedEmbedding.negAt_apply_isComplex (since := "2025-02-28")]
                                                                                      theorem NumberField.mixedEmbedding.negAt_apply_of_isComplex {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (x : mixedSpace K) (w : { w : InfinitePlace K // w.IsComplex }) :
                                                                                      ((negAt s) x).2 w = x.2 w

                                                                                      Alias of NumberField.mixedEmbedding.negAt_apply_isComplex.

                                                                                      @[simp]
                                                                                      theorem NumberField.mixedEmbedding.negAt_apply_snd {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (x : mixedSpace K) :
                                                                                      ((negAt s) x).2 = x.2
                                                                                      @[deprecated NumberField.mixedEmbedding.negAt_apply_norm_isReal (since := "2025-02-28")]

                                                                                      Alias of NumberField.mixedEmbedding.negAt_apply_norm_isReal.

                                                                                      @[deprecated NumberField.mixedEmbedding.negAt_apply_norm_isReal (since := "2025-03-01")]

                                                                                      Alias of NumberField.mixedEmbedding.negAt_apply_norm_isReal.

                                                                                      @[simp]

                                                                                      negAt preserves normAtPlace.

                                                                                      @[simp]

                                                                                      negAt is its own inverse.

                                                                                      For x : mixedSpace K, the set signSet x is the set of real places w s.t. x w ≤ 0.

                                                                                      Equations
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          @[simp]
                                                                                          @[deprecated NumberField.mixedEmbedding.negAt_signSet_apply_isReal (since := "2025-02-28")]

                                                                                          Alias of NumberField.mixedEmbedding.negAt_signSet_apply_isReal.

                                                                                          @[deprecated NumberField.mixedEmbedding.negAt_signSet_apply_isComplex (since := "2025-02-28")]

                                                                                          Alias of NumberField.mixedEmbedding.negAt_signSet_apply_isComplex.

                                                                                          theorem NumberField.mixedEmbedding.negAt_preimage {K : Type u_1} [Field K] (s : Set { w : InfinitePlace K // w.IsReal }) (A : Set (mixedSpace K)) :
                                                                                          (negAt s) ⁻¹' A = (negAt s) '' A

                                                                                          negAt s A is also equal to the preimage of A by negAt s. This fact is used to simplify some proofs.

                                                                                          @[reducible, inline]

                                                                                          The plusPart of a subset A of the mixedSpace is the set of points in A that are positive at all real places.

                                                                                          Equations
                                                                                            Instances For
                                                                                              theorem NumberField.mixedEmbedding.neg_of_mem_negA_plusPart {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (A : Set (mixedSpace K)) {x : mixedSpace K} (hx : x (negAt s) '' plusPart A) {w : { w : InfinitePlace K // w.IsReal }} (hw : w s) :
                                                                                              x.1 w < 0
                                                                                              theorem NumberField.mixedEmbedding.pos_of_notMem_negAt_plusPart {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (A : Set (mixedSpace K)) {x : mixedSpace K} (hx : x (negAt s) '' plusPart A) {w : { w : InfinitePlace K // w.IsReal }} (hw : ws) :
                                                                                              0 < x.1 w
                                                                                              @[deprecated NumberField.mixedEmbedding.pos_of_notMem_negAt_plusPart (since := "2025-05-23")]
                                                                                              theorem NumberField.mixedEmbedding.pos_of_not_mem_negAt_plusPart {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (A : Set (mixedSpace K)) {x : mixedSpace K} (hx : x (negAt s) '' plusPart A) {w : { w : InfinitePlace K // w.IsReal }} (hw : ws) :
                                                                                              0 < x.1 w

                                                                                              Alias of NumberField.mixedEmbedding.pos_of_notMem_negAt_plusPart.

                                                                                              The images of plusPart by negAt are pairwise disjoint.

                                                                                              theorem NumberField.mixedEmbedding.mem_negAt_plusPart_of_mem {K : Type u_1} [Field K] {s : Set { w : InfinitePlace K // w.IsReal }} (A : Set (mixedSpace K)) {x : mixedSpace K} (hA : ∀ (x : mixedSpace K), x A (fun (w : { w : InfinitePlace K // w.IsReal }) => x.1 w, x.2) A) (hx₁ : x A) (hx₂ : ∀ (w : { w : InfinitePlace K // w.IsReal }), x.1 w 0) :
                                                                                              x (negAt s) '' plusPart A (∀ ws, x.1 w < 0) ws, x.1 w > 0
                                                                                              theorem NumberField.mixedEmbedding.iUnion_negAt_plusPart_union {K : Type u_1} [Field K] (A : Set (mixedSpace K)) (hA : ∀ (x : mixedSpace K), x A (fun (w : { w : InfinitePlace K // w.IsReal }) => x.1 w, x.2) A) :
                                                                                              (⋃ (s : Set { w : InfinitePlace K // w.IsReal }), (negAt s) '' plusPart A) A ⋃ (w : { w : InfinitePlace K // w.IsReal }), {x : mixedSpace K | x.1 w = 0} = A

                                                                                              Assume that A is symmetric at real places then, the union of the images of plusPart by negAt and of the set of elements of A that are zero at at least one real place is equal to A.

                                                                                              theorem NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae {K : Type u_1} [Field K] (A : Set (mixedSpace K)) (hA : ∀ (x : mixedSpace K), x A (fun (w : { w : InfinitePlace K // w.IsReal }) => x.1 w, x.2) A) [NumberField K] :

                                                                                              The image of the plusPart of A by negAt have all the same volume as plusPart A.

                                                                                              If a subset A of the mixedSpace is symmetric at real places, then its volume is 2^ nrRealPlaces K times the volume of its plusPart.

                                                                                              @[reducible, inline]

                                                                                              The realSpace associated to a number field K is the real vector space indexed by the infinite places of K.

                                                                                              Equations
                                                                                                Instances For

                                                                                                  The set of points in the realSpace that are equal to 0 at a fixed place has volume zero.

                                                                                                  The continuous linear map from realSpace K to mixedSpace K which is the identity at real places and the natural map ℝ → ℂ at complex places.

                                                                                                  Equations
                                                                                                    Instances For
                                                                                                      theorem NumberField.mixedEmbedding.mixedSpaceOfRealSpace_apply {K : Type u_1} [Field K] (x : realSpace K) :
                                                                                                      mixedSpaceOfRealSpace x = (fun (w : { w : InfinitePlace K // w.IsReal }) => x w, fun (w : { w : InfinitePlace K // w.IsComplex }) => (x w))
                                                                                                      @[reducible, inline]

                                                                                                      The map from the mixedSpace K to realSpace K that sends the values at complex places to their norm.

                                                                                                      Equations
                                                                                                        Instances For
                                                                                                          @[reducible, inline]

                                                                                                          The map from the mixedSpace K to realSpace K that sends each component to its norm.

                                                                                                          Equations
                                                                                                            Instances For