Documentation

Mathlib.NumberTheory.NumberField.Discriminant.Defs

Number field discriminant #

This file defines the discriminant of a number field.

Main definitions #

Tags #

number field, discriminant

@[reducible, inline]
noncomputable abbrev NumberField.discr (K : Type u_1) [Field K] [NumberField K] :

The absolute discriminant of a number field.

Equations
    Instances For
      @[simp]

      The absolute discriminant of the number field is 1.

      Alias of Rat.numberField_discr.


      The absolute discriminant of the number field is 1.

      theorem Algebra.discr_eq_discr_of_toMatrix_coeff_isIntegral {ι : Type u_2} {ι' : Type u_3} (K : Type u_1) [Field K] [DecidableEq ι] [DecidableEq ι'] [Fintype ι] [Fintype ι'] [NumberField K] {b : Module.Basis ι K} {b' : Module.Basis ι' K} (h : ∀ (i : ι) (j : ι'), IsIntegral (b.toMatrix (⇑b') i j)) (h' : ∀ (i : ι') (j : ι), IsIntegral (b'.toMatrix (⇑b) i j)) :
      discr b = discr b'

      If b and b' are -bases of a number field K such that ∀ i j, IsIntegral ℤ (b.toMatrix b' i j) and ∀ i j, IsIntegral ℤ (b'.toMatrix b i j) then discr ℚ b = discr ℚ b'.