Documentation

Mathlib.Order.Defs.PartialOrder

Orders #

Defines classes for preorders and partial orders and proves some basic lemmas about them.

We also define covering relations on a preorder. We say that b covers a if a < b and there is no element in between. We say that b weakly covers a if a ≤ b and there is no element between a and b. In a partial order this is equivalent to a ⋖ b ∨ a = b, in a preorder this is equivalent to a ⋖ b ∨ (a ≤ b ∧ b ≤ a)

Notation #

Definition of Preorder and lemmas about types with a Preorder #

class Preorder (α : Type u_2) extends LE α, LT α :
Type u_2

A preorder is a reflexive, transitive relation with a < b defined in the obvious way.

Instances
    Equations
      @[deprecated Preorder.lt_iff_le_not_ge (since := "2025-05-11")]
      theorem Preorder.lt_iff_le_not_le {α : Type u_2} [self : Preorder α] (a b : α) :
      a < b a b ¬b a

      Alias of Preorder.lt_iff_le_not_ge.

      @[simp]
      theorem le_refl {α : Type u_1} [Preorder α] (a : α) :
      a a

      The relation on a preorder is reflexive.

      theorem le_rfl {α : Type u_1} [Preorder α] {a : α} :
      a a

      A version of le_refl where the argument is implicit

      theorem le_trans {α : Type u_1} [Preorder α] {a b c : α} :
      a bb ca c

      The relation on a preorder is transitive.

      theorem lt_iff_le_not_ge {α : Type u_1} [Preorder α] {a b : α} :
      a < b a b ¬b a
      @[deprecated lt_iff_le_not_ge (since := "2025-05-11")]
      theorem lt_iff_le_not_le {α : Type u_1} [Preorder α] {a b : α} :
      a < b a b ¬b a

      Alias of lt_iff_le_not_ge.

      theorem lt_of_le_not_ge {α : Type u_1} [Preorder α] {a b : α} (hab : a b) (hba : ¬b a) :
      a < b
      @[deprecated lt_of_le_not_ge (since := "2025-05-11")]
      theorem lt_of_le_not_le {α : Type u_1} [Preorder α] {a b : α} (hab : a b) (hba : ¬b a) :
      a < b

      Alias of lt_of_le_not_ge.

      theorem le_of_eq {α : Type u_1} [Preorder α] {a b : α} (hab : a = b) :
      a b
      theorem le_of_lt {α : Type u_1} [Preorder α] {a b : α} (hab : a < b) :
      a b
      theorem not_le_of_gt {α : Type u_1} [Preorder α] {a b : α} (hab : a < b) :
      ¬b a
      theorem not_lt_of_ge {α : Type u_1} [Preorder α] {a b : α} (hab : a b) :
      ¬b < a
      @[deprecated not_le_of_gt (since := "2025-05-11")]
      theorem not_le_of_lt {α : Type u_1} [Preorder α] {a b : α} (hab : a < b) :
      ¬b a

      Alias of not_le_of_gt.

      @[deprecated not_lt_of_ge (since := "2025-05-11")]
      theorem not_lt_of_le {α : Type u_1} [Preorder α] {a b : α} (hab : a b) :
      ¬b < a

      Alias of not_lt_of_ge.

      theorem LT.lt.not_ge {α : Type u_1} [Preorder α] {a b : α} (hab : a < b) :
      ¬b a

      Alias of not_le_of_gt.

      theorem LE.le.not_gt {α : Type u_1} [Preorder α] {a b : α} (hab : a b) :
      ¬b < a

      Alias of not_lt_of_ge.

      @[deprecated LT.lt.not_ge (since := "2025-06-07")]
      theorem LT.lt.not_le {α : Type u_1} [Preorder α] {a b : α} (hab : a < b) :
      ¬b a

      Alias of not_le_of_gt.


      Alias of not_le_of_gt.

      @[deprecated LE.le.not_gt (since := "2025-06-07")]
      theorem LE.le.not_lt {α : Type u_1} [Preorder α] {a b : α} (hab : a b) :
      ¬b < a

      Alias of not_lt_of_ge.


      Alias of not_lt_of_ge.

      theorem ge_trans {α : Type u_1} [Preorder α] {a b c : α} :
      b ac bc a
      theorem lt_irrefl {α : Type u_1} [Preorder α] (a : α) :
      ¬a < a
      @[deprecated lt_irrefl (since := "2025-06-07")]
      theorem gt_irrefl {α : Type u_1} [Preorder α] (a : α) :
      ¬a < a

      Alias of lt_irrefl.

      theorem lt_of_lt_of_le {α : Type u_1} [Preorder α] {a b c : α} (hab : a < b) (hbc : b c) :
      a < c
      theorem lt_of_le_of_lt {α : Type u_1} [Preorder α] {a b c : α} (hab : a b) (hbc : b < c) :
      a < c
      theorem lt_of_lt_of_le' {α : Type u_1} [Preorder α] {a b c : α} :
      b < ac bc < a
      theorem lt_of_le_of_lt' {α : Type u_1} [Preorder α] {a b c : α} :
      b ac < bc < a
      @[deprecated lt_of_lt_of_le' (since := "2025-06-07")]
      theorem gt_of_gt_of_ge {α : Type u_1} [Preorder α] {a b c : α} :
      b < ac bc < a

      Alias of lt_of_lt_of_le'.

      @[deprecated lt_of_le_of_lt' (since := "2025-06-07")]
      theorem gt_of_ge_of_gt {α : Type u_1} [Preorder α] {a b c : α} :
      b ac < bc < a

      Alias of lt_of_le_of_lt'.

      theorem lt_trans {α : Type u_1} [Preorder α] {a b c : α} :
      a < bb < ca < c
      theorem gt_trans {α : Type u_1} [Preorder α] {a b c : α} :
      b < ac < bc < a
      theorem ne_of_lt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
      a b
      theorem ne_of_gt {α : Type u_1} [Preorder α] {a b : α} (h : b < a) :
      a b
      theorem lt_asymm {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
      ¬b < a
      theorem not_lt_of_gt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
      ¬b < a

      Alias of lt_asymm.

      @[deprecated not_lt_of_gt (since := "2025-05-11")]
      theorem not_lt_of_lt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
      ¬b < a

      Alias of lt_asymm.


      Alias of lt_asymm.

      theorem le_of_lt_or_eq {α : Type u_1} [Preorder α] {a b : α} (h : a < b a = b) :
      a b
      theorem le_of_eq_or_lt {α : Type u_1} [Preorder α] {a b : α} (h : a = b a < b) :
      a b
      Equations
        Equations
          Equations
            Equations
              Equations
                Equations
                  Equations
                    Equations

                      < is decidable if is.

                      Equations
                        Instances For
                          def WCovBy {α : Type u_1} [Preorder α] (a b : α) :

                          WCovBy a b means that a = b or b covers a. This means that a ≤ b and there is no element in between. This is denoted a ⩿ b.

                          Equations
                            Instances For

                              WCovBy a b means that a = b or b covers a. This means that a ≤ b and there is no element in between. This is denoted a ⩿ b.

                              Equations
                                Instances For
                                  def CovBy {α : Type u_2} [LT α] (a b : α) :

                                  CovBy a b means that b covers a. This means that a < b and there is no element in between. This is denoted a ⋖ b.

                                  Equations
                                    Instances For

                                      CovBy a b means that b covers a. This means that a < b and there is no element in between. This is denoted a ⋖ b.

                                      Equations
                                        Instances For

                                          Definition of PartialOrder and lemmas about types with a partial order #

                                          class PartialOrder (α : Type u_2) extends Preorder α :
                                          Type u_2

                                          A partial order is a reflexive, transitive, antisymmetric relation .

                                          Instances
                                            theorem le_antisymm {α : Type u_1} [PartialOrder α] {a b : α} :
                                            a bb aa = b
                                            theorem eq_of_le_of_ge {α : Type u_1} [PartialOrder α] {a b : α} :
                                            a bb aa = b

                                            Alias of le_antisymm.

                                            @[deprecated eq_of_le_of_ge (since := "2025-06-07")]
                                            theorem eq_of_le_of_le {α : Type u_1} [PartialOrder α] {a b : α} :
                                            a bb aa = b

                                            Alias of le_antisymm.


                                            Alias of le_antisymm.

                                            theorem le_antisymm_iff {α : Type u_1} [PartialOrder α] {a b : α} :
                                            a = b a b b a
                                            theorem lt_of_le_of_ne {α : Type u_1} [PartialOrder α] {a b : α} :
                                            a ba ba < b

                                            Equality is decidable if is.

                                            Equations
                                              Instances For
                                                theorem Decidable.lt_or_eq_of_le {α : Type u_1} [PartialOrder α] {a b : α} [DecidableLE α] (hab : a b) :
                                                a < b a = b
                                                theorem Decidable.le_iff_lt_or_eq {α : Type u_1} [PartialOrder α] {a b : α} [DecidableLE α] :
                                                a b a < b a = b
                                                theorem lt_or_eq_of_le {α : Type u_1} [PartialOrder α] {a b : α} :
                                                a ba < b a = b
                                                theorem le_iff_lt_or_eq {α : Type u_1} [PartialOrder α] {a b : α} :
                                                a b a < b a = b