Documentation

Mathlib.Order.Notation

Notation classes for lattice operations #

In this file we introduce typeclasses and definitions for lattice operations.

Main definitions #

Notations #

We implement a delaborator that pretty prints max x y/min x y as x ⊔ y/x ⊓ y if and only if the order on α does not have a LinearOrder α instance (where x y : α).

This is so that in a lattice we can use the same underlying constants max/min as in linear orders, while using the more idiomatic notation x ⊔ y/x ⊓ y. Lemmas about the operators and should use the names sup and inf respectively.

class HasCompl (α : Type u_1) :
Type u_1

Set / lattice complement

  • compl : αα

    Set / lattice complement

Instances

    Set / lattice complement

    Equations
      Instances For

        Sup and Inf #

        theorem Min.ext {α : Type u} {x y : Min α} (min : min = min) :
        x = y
        theorem Max.ext_iff {α : Type u} {x y : Max α} :
        x = y max = max
        theorem Min.ext_iff {α : Type u} {x y : Min α} :
        x = y min = min
        theorem Max.ext {α : Type u} {x y : Max α} (max : max = max) :
        x = y

        The supremum/join operation: x ⊔ y. It is notation for max x y and should be used when the type is not a linear order.

        Equations
          Instances For

            The infimum/meet operation: x ⊓ y. It is notation for min x y and should be used when the type is not a linear order.

            Equations
              Instances For

                Delaborate max x y into x ⊔ y if the type is not a linear order.

                Equations
                  Instances For

                    Delaborate min x y into x ⊓ y if the type is not a linear order.

                    Equations
                      Instances For
                        class HImp (α : Type u_1) :
                        Type u_1

                        Syntax typeclass for Heyting implication .

                        • himp : ααα

                          Heyting implication

                        Instances
                          class HNot (α : Type u_1) :
                          Type u_1

                          Syntax typeclass for Heyting negation .

                          The difference between HasCompl and HNot is that the former belongs to Heyting algebras, while the latter belongs to co-Heyting algebras. They are both pseudo-complements, but compl underestimates while HNot overestimates. In boolean algebras, they are equal. See hnot_eq_compl.

                          • hnot : αα

                            Heyting negation

                          Instances

                            Heyting implication

                            Equations
                              Instances For

                                Heyting negation

                                Equations
                                  Instances For
                                    class Top (α : Type u_1) :
                                    Type u_1

                                    Typeclass for the (\top) notation

                                    • top : α

                                      The top (, \top) element

                                    Instances
                                      theorem Top.ext_iff {α : Type u_1} {x y : Top α} :
                                      x = y =
                                      theorem Top.ext {α : Type u_1} {x y : Top α} (top : = ) :
                                      x = y
                                      class Bot (α : Type u_1) :
                                      Type u_1

                                      Typeclass for the (\bot) notation

                                      • bot : α

                                        The bot (, \bot) element

                                      Instances
                                        theorem Bot.ext_iff {α : Type u_1} {x y : Bot α} :
                                        x = y =
                                        theorem Bot.ext {α : Type u_1} {x y : Bot α} (bot : = ) :
                                        x = y

                                        The top (, \top) element

                                        Equations
                                          Instances For

                                            The bot (, \bot) element

                                            Equations
                                              Instances For
                                                @[instance 100]
                                                instance top_nonempty (α : Type u_1) [Top α] :
                                                @[instance 100]
                                                instance bot_nonempty (α : Type u_1) [Bot α] :