Documentation

Mathlib.Probability.Kernel.Composition.ParallelComp

Parallel composition of kernels #

Two kernels κ : Kernel α β and η : Kernel γ δ can be applied in parallel to give a kernel κ ∥ₖ η from α × γ to β × δ: (κ ∥ₖ η) (a, c) = (κ a).prod (η c).

Main definitions #

Notations #

theorem ProbabilityTheory.Kernel.parallelComp_def {α : Type u_5} {β : Type u_6} {γ : Type u_7} {δ : Type u_8} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} (κ : Kernel α β) (η : Kernel γ δ) :
κ.parallelComp η = if h : IsSFiniteKernel κ IsSFiniteKernel η then { toFun := fun (x : α × γ) => (κ x.1).prod (η x.2), measurable' := } else 0
@[irreducible]
noncomputable def ProbabilityTheory.Kernel.parallelComp {α : Type u_5} {β : Type u_6} {γ : Type u_7} {δ : Type u_8} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} (κ : Kernel α β) (η : Kernel γ δ) :
Kernel (α × γ) (β × δ)

Parallel product of two kernels.

Equations
    Instances For

      Parallel product of two kernels.

      Equations
        Instances For
          @[simp]
          theorem ProbabilityTheory.Kernel.parallelComp_of_not_isSFiniteKernel_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} (η : Kernel γ δ) (h : ¬IsSFiniteKernel κ) :
          κ.parallelComp η = 0
          @[simp]
          theorem ProbabilityTheory.Kernel.parallelComp_of_not_isSFiniteKernel_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {η : Kernel γ δ} (κ : Kernel α β) (h : ¬IsSFiniteKernel η) :
          κ.parallelComp η = 0
          theorem ProbabilityTheory.Kernel.parallelComp_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel γ δ) [IsSFiniteKernel η] (x : α × γ) :
          (κ.parallelComp η) x = (κ x.1).prod (η x.2)
          theorem ProbabilityTheory.Kernel.parallelComp_apply' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel γ δ} {x : α × γ} [IsSFiniteKernel κ] [IsSFiniteKernel η] {s : Set (β × δ)} (hs : MeasurableSet s) :
          ((κ.parallelComp η) x) s = ∫⁻ (b : β), (η x.2) (Prod.mk b ⁻¹' s) κ x.1
          @[simp]
          theorem ProbabilityTheory.Kernel.parallelComp_apply_univ {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel γ δ} {x : α × γ} [IsSFiniteKernel κ] [IsSFiniteKernel η] :
          ((κ.parallelComp η) x) Set.univ = (κ x.1) Set.univ * (η x.2) Set.univ
          @[simp]
          theorem ProbabilityTheory.Kernel.parallelComp_zero_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} (η : Kernel γ δ) :
          @[simp]
          theorem ProbabilityTheory.Kernel.parallelComp_zero_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} (κ : Kernel α β) :
          theorem ProbabilityTheory.Kernel.lintegral_parallelComp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel γ δ} [IsSFiniteKernel κ] [IsSFiniteKernel η] (ac : α × γ) {g : β × δENNReal} (hg : Measurable g) :
          ∫⁻ (bd : β × δ), g bd (κ.parallelComp η) ac = ∫⁻ (b : β), ∫⁻ (d : δ), g (b, d) η ac.2 κ ac.1
          theorem ProbabilityTheory.Kernel.lintegral_parallelComp_symm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel γ δ} [IsSFiniteKernel κ] [IsSFiniteKernel η] (ac : α × γ) {g : β × δENNReal} (hg : Measurable g) :
          ∫⁻ (bd : β × δ), g bd (κ.parallelComp η) ac = ∫⁻ (d : δ), ∫⁻ (b : β), g (b, d) κ ac.1 η ac.2
          theorem ProbabilityTheory.Kernel.parallelComp_sum_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {ι : Type u_5} [Countable ι] (κ : ιKernel α β) [∀ (i : ι), IsSFiniteKernel (κ i)] (η : Kernel γ δ) :
          (Kernel.sum κ).parallelComp η = Kernel.sum fun (i : ι) => (κ i).parallelComp η
          theorem ProbabilityTheory.Kernel.parallelComp_sum_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {ι : Type u_5} [Countable ι] (κ : Kernel α β) (η : ιKernel γ δ) [∀ (i : ι), IsSFiniteKernel (η i)] :
          κ.parallelComp (Kernel.sum η) = Kernel.sum fun (i : ι) => κ.parallelComp (η i)
          instance ProbabilityTheory.Kernel.instIsMarkovKernelProdParallelComp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel γ δ} [IsMarkovKernel κ] [IsMarkovKernel η] :
          instance ProbabilityTheory.Kernel.instIsZeroOrMarkovKernelProdParallelComp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel γ δ} [IsZeroOrMarkovKernel κ] [IsZeroOrMarkovKernel η] :
          instance ProbabilityTheory.Kernel.instIsFiniteKernelProdParallelComp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel γ δ} [IsFiniteKernel κ] [IsFiniteKernel η] :
          instance ProbabilityTheory.Kernel.instIsSFiniteKernelProdParallelComp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel γ δ} :