Documentation

Mathlib.RepresentationTheory.FiniteIndex

(Co)induced representations of a finite index subgroup #

Given a commutative ring k, a finite index subgroup S ≤ G, and a k-linear S-representation A, this file defines an isomorphism $Ind_S^G(A) ≅ Coind_S^G(A)$. Given g : G and a : A, the forward map sends ⟦g ⊗ₜ[k] a⟧ to the function G → Asupported at sg by ρ(s)(a) for s : S and which is 0 elsewhere. Meanwhile, the inverse sends f : G → A to ∑ᵢ ⟦gᵢ ⊗ₜ[k] f(gᵢ)⟧ for 1 ≤ i ≤ n, where g₁, ..., gₙ is a set of right coset representatives of S.

Main definitions #

noncomputable def Rep.indToCoindAux {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] (A : Rep k S) (g : G) :
A.V →ₗ[k] GA.V

Let S ≤ G be a subgroup and (A, ρ) a k-linear S-representation. Then given g : G and a : A, this is the function G → A sending sg to ρ(s)(a) for all s : S and everything else to 0.

Equations
    Instances For
      @[simp]
      theorem Rep.indToCoindAux_self {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] {A : Rep k S} (g : G) (a : A.V) :
      (A.indToCoindAux g) a g = a
      theorem Rep.indToCoindAux_of_not_rel {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] {A : Rep k S} (g g₁ : G) (a : A.V) (h : ¬(QuotientGroup.rightRel S) g₁ g) :
      (A.indToCoindAux g) a g₁ = 0
      @[simp]
      theorem Rep.indToCoindAux_mul_snd {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] {A : Rep k S} (g g₁ : G) (a : A.V) (s : S) :
      (A.indToCoindAux g) a (s * g₁) = (A.ρ s) ((A.indToCoindAux g) a g₁)
      @[simp]
      theorem Rep.indToCoindAux_mul_fst {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] {A : Rep k S} (g₁ g₂ : G) (a : A.V) (s : S) :
      (A.indToCoindAux (s * g₁)) ((A.ρ s) a) g₂ = (A.indToCoindAux g₁) a g₂
      @[simp]
      theorem Rep.indToCoindAux_snd_mul_inv {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] {A : Rep k S} (g₁ g₂ g₃ : G) (a : A.V) :
      (A.indToCoindAux g₁) a (g₂ * g₃⁻¹) = (A.indToCoindAux (g₁ * g₃)) a g₂
      @[simp]
      theorem Rep.indToCoindAux_fst_mul_inv {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] {A : Rep k S} (g₁ g₂ g₃ : G) (a : A.V) :
      (A.indToCoindAux (g₁ * g₂⁻¹)) a g₃ = (A.indToCoindAux g₁) a (g₃ * g₂)
      theorem Rep.indToCoindAux_comm {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] {A B : Rep k S} (f : A B) (g₁ g₂ : G) (a : A.V) :
      @[reducible, inline]
      noncomputable abbrev Rep.indToCoind {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] (A : Rep k S) :
      (ind S.subtype A).V →ₗ[k] (coind S.subtype A).V

      Let S ≤ G be a subgroup and A a k-linear S-representation. This is the k-linear map Ind_S^G(A) →ₗ[k] Coind_S^G(A) sending (⟦g ⊗ₜ[k] a⟧, sg) ↦ ρ(s)(a).

      Equations
        Instances For
          noncomputable def Rep.coindToInd {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} (A : Rep k S) [S.FiniteIndex] :
          (coind S.subtype A).V →ₗ[k] (ind S.subtype A).V

          Let S ≤ G be a finite index subgroup, g₁, ..., gₙ a set of right coset representatives of S, and A a k-linear S-representation. This is the k-linear map Coind_S^G(A) →ₗ[k] Ind_S^G(A) sending f : G → A to ∑ᵢ ⟦gᵢ ⊗ₜ[k] f(gᵢ)⟧ for 1 ≤ i ≤ n.

          Equations
            Instances For
              @[simp]
              theorem Rep.coindToInd_apply {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} (A : Rep k S) [S.FiniteIndex] (f : (coind S.subtype A).V) :
              A.coindToInd f = g : Quotient (QuotientGroup.rightRel S), g.liftOn (fun (g : G) => (Representation.IndV.mk S.subtype A.ρ g) (f g))
              theorem Rep.coindToInd_of_support_subset_orbit {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} {A : Rep k S} [S.FiniteIndex] (g : G) (f : (coind S.subtype A).V) (hx : Function.support f MulAction.orbit (↥S) g) :
              noncomputable def Rep.indCoindIso {k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel (QuotientGroup.rightRel S)] (A : Rep k S) [S.FiniteIndex] :

              Let S ≤ G be a finite index subgroup, g₁, ..., gₙ a set of right coset representatives of S, and A a k-linear S-representation. This is an isomorphism Ind_S^G(A) ≅ Coind_S^G(A). The forward map sends (⟦g ⊗ₜ[k] a⟧, sg) ↦ ρ(s)(a), and the inverse sends f : G → A to ∑ᵢ ⟦gᵢ ⊗ₜ[k] f(gᵢ)⟧ for 1 ≤ i ≤ n.

              Equations
                Instances For

                  Given a finite index subgroup S ≤ G, this is a natural isomorphism between the Ind_S^G and Coind_G^S functors Rep k S ⥤ Rep k G.

                  Equations
                    Instances For
                      @[simp]
                      theorem Rep.indCoindNatIso_hom_app (k : Type u) {G : Type u} [CommRing k] [Group G] (S : Subgroup G) [DecidableRel (QuotientGroup.rightRel S)] [S.FiniteIndex] (X : Rep k S) :
                      @[simp]
                      theorem Rep.indCoindNatIso_inv_app (k : Type u) {G : Type u} [CommRing k] [Group G] (S : Subgroup G) [DecidableRel (QuotientGroup.rightRel S)] [S.FiniteIndex] (X : Rep k S) :

                      Given a finite index subgroup S ≤ G, Ind_S^G is right adjoint to the restriction functor Res k G ⥤ Res k S, since it is naturally isomorphic to Coind_S^G.

                      Equations
                        Instances For

                          Given a finite index subgroup S ≤ G, Coind_S^G is left adjoint to the restriction functor Res k G ⥤ Res k S, since it is naturally isomorphic to Ind_S^G.

                          Equations
                            Instances For