Documentation

Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality

Functoriality of group cohomology #

Given a commutative ring k, a group homomorphism f : G →* H, a k-linear H-representation A, a k-linear G-representation B, and a representation morphism Res(f)(A) ⟶ B, we get a cochain map inhomogeneousCochains A ⟶ inhomogeneousCochains B and hence maps on cohomology Hⁿ(H, A) ⟶ Hⁿ(G, B). We also provide extra API for these maps in degrees 0, 1, 2.

Main definitions #

theorem groupCohomology.congr {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} {f₁ f₂ : G →* H} (h : f₁ = f₂) {φ : (Action.res (ModuleCat k) f₁).obj A B} {T : Type u_1} (F : (f : G →* H) → ((Action.res (ModuleCat k) f).obj A B) → T) :
F f₁ φ = F f₂ (h φ)
noncomputable def groupCohomology.cochainsMap {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the chain map sending x : Hⁿ → A to (g : Gⁿ) ↦ φ (x (f ∘ g)).

Equations
    Instances For
      theorem groupCohomology.cochainsMap_f {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (i : ) :
      theorem groupCohomology.cochainsMap_f_hom {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (i : ) :
      ModuleCat.Hom.hom ((cochainsMap f φ).f i) = (ModuleCat.Hom.hom φ.hom).compLeft (Fin iG) ∘ₗ LinearMap.funLeft k A.V fun (x : Fin iG) => f x
      @[simp]
      @[deprecated groupCohomology.cochainsMap_id_f_hom_eq_compLeft (since := "2025-06-11")]
      theorem groupCohomology.cochainsMap_id_f_eq_compLeft {k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A B) (i : ) :

      Alias of groupCohomology.cochainsMap_id_f_hom_eq_compLeft.

      theorem groupCohomology.cochainsMap_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) :
      @[simp]
      theorem groupCohomology.cochainsMap_zero {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) :
      theorem groupCohomology.cochainsMap_f_map_mono {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (hf : Function.Surjective f) [CategoryTheory.Mono φ] (i : ) :
      theorem groupCohomology.cochainsMap_f_map_epi {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (hf : Function.Injective f) [CategoryTheory.Epi φ] (i : ) :
      @[reducible, inline]
      noncomputable abbrev groupCohomology.cocyclesMap {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

      Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map Zⁿ(H, A) ⟶ Zⁿ(G, B) sending x : Hⁿ → A to (g : Gⁿ) ↦ φ (x (f ∘ g)).

      Equations
        Instances For
          theorem groupCohomology.cocyclesMap_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :
          theorem groupCohomology.cocyclesMap_comp_assoc {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) {Z : ModuleCat k} (h : cocycles C n Z) :
          @[reducible, inline]
          noncomputable abbrev groupCohomology.map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

          Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map Hⁿ(H, A) ⟶ Hⁿ(G, B) sending x : Hⁿ → A to (g : Gⁿ) ↦ φ (x (f ∘ g)).

          Equations
            Instances For
              theorem groupCohomology.π_map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :
              theorem groupCohomology.map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :
              theorem groupCohomology.map_comp_assoc {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) {Z : ModuleCat k} (h : groupCohomology C n Z) :
              theorem groupCohomology.map_id_comp {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :
              @[reducible, inline]
              noncomputable abbrev groupCohomology.cochainsMap₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
              ModuleCat.of k (HA.V) ModuleCat.of k (GB.V)

              Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H → A to (g : G) ↦ φ (x (f g)).

              Equations
                Instances For
                  @[deprecated groupCohomology.cochainsMap₁ (since := "2025-07-12")]
                  def groupCohomology.f₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                  ModuleCat.of k (HA.V) ModuleCat.of k (GB.V)

                  Alias of groupCohomology.cochainsMap₁.


                  Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H → A to (g : G) ↦ φ (x (f g)).

                  Equations
                    Instances For
                      @[deprecated groupCohomology.f₁ (since := "2025-06-25")]
                      def groupCohomology.fOne {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                      ModuleCat.of k (HA.V) ModuleCat.of k (GB.V)

                      Alias of groupCohomology.cochainsMap₁.


                      Alias of groupCohomology.cochainsMap₁.


                      Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H → A to (g : G) ↦ φ (x (f g)).

                      Equations
                        Instances For
                          @[reducible, inline]
                          noncomputable abbrev groupCohomology.cochainsMap₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                          ModuleCat.of k (H × HA.V) ModuleCat.of k (G × GB.V)

                          Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H → A to (g₁, g₂ : G × G) ↦ φ (x (f g₁, f g₂)).

                          Equations
                            Instances For
                              @[deprecated groupCohomology.cochainsMap₂ (since := "2025-07-12")]
                              def groupCohomology.f₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                              ModuleCat.of k (H × HA.V) ModuleCat.of k (G × GB.V)

                              Alias of groupCohomology.cochainsMap₂.


                              Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H → A to (g₁, g₂ : G × G) ↦ φ (x (f g₁, f g₂)).

                              Equations
                                Instances For
                                  @[deprecated groupCohomology.f₂ (since := "2025-06-25")]
                                  def groupCohomology.fTwo {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                  ModuleCat.of k (H × HA.V) ModuleCat.of k (G × GB.V)

                                  Alias of groupCohomology.cochainsMap₂.


                                  Alias of groupCohomology.cochainsMap₂.


                                  Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H → A to (g₁, g₂ : G × G) ↦ φ (x (f g₁, f g₂)).

                                  Equations
                                    Instances For
                                      @[reducible, inline]
                                      noncomputable abbrev groupCohomology.cochainsMap₃ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                      ModuleCat.of k (H × H × HA.V) ModuleCat.of k (G × G × GB.V)

                                      Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H × H → A to (g₁, g₂, g₃ : G × G × G) ↦ φ (x (f g₁, f g₂, f g₃)).

                                      Equations
                                        Instances For
                                          @[deprecated groupCohomology.cochainsMap₃ (since := "2025-07-12")]
                                          def groupCohomology.f₃ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                          ModuleCat.of k (H × H × HA.V) ModuleCat.of k (G × G × GB.V)

                                          Alias of groupCohomology.cochainsMap₃.


                                          Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H × H → A to (g₁, g₂, g₃ : G × G × G) ↦ φ (x (f g₁, f g₂, f g₃)).

                                          Equations
                                            Instances For
                                              @[deprecated groupCohomology.f₃ (since := "2025-06-25")]
                                              def groupCohomology.fThree {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                              ModuleCat.of k (H × H × HA.V) ModuleCat.of k (G × G × GB.V)

                                              Alias of groupCohomology.cochainsMap₃.


                                              Alias of groupCohomology.cochainsMap₃.


                                              Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H × H → A to (g₁, g₂, g₃ : G × G × G) ↦ φ (x (f g₁, f g₂, f g₃)).

                                              Equations
                                                Instances For
                                                  @[deprecated groupCohomology.cochainsMap_f_0_comp_cochainsIso₀ (since := "2025-06-25")]

                                                  Alias of groupCohomology.cochainsMap_f_0_comp_cochainsIso₀.

                                                  @[deprecated groupCohomology.cochainsMap_f_0_comp_cochainsIso₀ (since := "2025-05-09")]

                                                  Alias of groupCohomology.cochainsMap_f_0_comp_cochainsIso₀.

                                                  @[deprecated groupCohomology.cochainsMap_f_1_comp_cochainsIso₁ (since := "2025-06-25")]

                                                  Alias of groupCohomology.cochainsMap_f_1_comp_cochainsIso₁.

                                                  @[deprecated groupCohomology.cochainsMap_f_1_comp_oneCochainsIso (since := "2025-05-09")]

                                                  Alias of groupCohomology.cochainsMap_f_1_comp_cochainsIso₁.


                                                  Alias of groupCohomology.cochainsMap_f_1_comp_cochainsIso₁.

                                                  @[deprecated groupCohomology.cochainsMap_f_2_comp_cochainsIso₂ (since := "2025-06-25")]

                                                  Alias of groupCohomology.cochainsMap_f_2_comp_cochainsIso₂.

                                                  @[deprecated groupCohomology.cochainsMap_f_2_comp_twoCochainsIso (since := "2025-05-09")]

                                                  Alias of groupCohomology.cochainsMap_f_2_comp_cochainsIso₂.


                                                  Alias of groupCohomology.cochainsMap_f_2_comp_cochainsIso₂.

                                                  @[deprecated groupCohomology.cochainsMap_f_3_comp_cochainsIso₃ (since := "2025-06-25")]

                                                  Alias of groupCohomology.cochainsMap_f_3_comp_cochainsIso₃.

                                                  @[deprecated groupCohomology.cochainsMap_f_3_comp_threeCochainsIso (since := "2025-05-09")]

                                                  Alias of groupCohomology.cochainsMap_f_3_comp_cochainsIso₃.


                                                  Alias of groupCohomology.cochainsMap_f_3_comp_cochainsIso₃.

                                                  @[deprecated groupCohomology.map (since := "2025-06-09")]
                                                  def groupCohomology.H0Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

                                                  Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Aᴴ ⟶ Bᴳ.

                                                  Equations
                                                    Instances For
                                                      @[deprecated groupCohomology.map_id (since := "2025-06-09")]

                                                      Alias of groupCohomology.map_id.

                                                      @[deprecated groupCohomology.map_comp (since := "2025-06-09")]
                                                      theorem groupCohomology.H0Map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :

                                                      Alias of groupCohomology.map_comp.

                                                      @[deprecated groupCohomology.map_id_comp (since := "2025-06-09")]
                                                      theorem groupCohomology.H0Map_id_comp {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :

                                                      Alias of groupCohomology.map_id_comp.

                                                      @[deprecated groupCohomology.map_H0Iso_hom_f (since := "2025-06-09")]

                                                      Alias of groupCohomology.map_H0Iso_hom_f.

                                                      @[deprecated groupCohomology.map_id_comp_H0Iso_hom (since := "2025-06-09")]

                                                      Alias of groupCohomology.map_id_comp_H0Iso_hom.

                                                      @[deprecated groupCohomology.mono_map_0_of_mono (since := "2025-06-09")]

                                                      Alias of groupCohomology.mono_map_0_of_mono.

                                                      noncomputable def groupCohomology.mapShortComplexH1 {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                                      Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map from the short complex A --d₀₁--> Fun(H, A) --d₁₂--> Fun(H × H, A) to B --d₀₁--> Fun(G, B) --d₁₂--> Fun(G × G, B).

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem groupCohomology.mapShortComplexH1_τ₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                                          @[simp]
                                                          theorem groupCohomology.mapShortComplexH1_τ₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                                          @[simp]
                                                          theorem groupCohomology.mapShortComplexH1_τ₃ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                                          @[simp]
                                                          theorem groupCohomology.mapShortComplexH1_zero {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) :
                                                          theorem groupCohomology.mapShortComplexH1_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) :
                                                          @[reducible, inline]
                                                          noncomputable abbrev groupCohomology.mapCocycles₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                                          Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Z¹(H, A) ⟶ Z¹(G, B).

                                                          Equations
                                                            Instances For
                                                              @[deprecated groupCohomology.mapCocycles₁ (since := "2025-06-25")]
                                                              def groupCohomology.mapOneCocycles {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                                              Alias of groupCohomology.mapCocycles₁.


                                                              Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Z¹(H, A) ⟶ Z¹(G, B).

                                                              Equations
                                                                Instances For
                                                                  @[deprecated groupCohomology.mapCocycles₁_comp_i (since := "2025-06-25")]

                                                                  Alias of groupCohomology.mapCocycles₁_comp_i.

                                                                  @[simp]
                                                                  theorem groupCohomology.coe_mapCocycles₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (x : (ModuleCat.of k (cocycles₁ A))) :
                                                                  @[deprecated groupCohomology.coe_mapCocycles₁ (since := "2025-06-25")]
                                                                  theorem groupCohomology.coe_mapOneCocycles {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (x : (ModuleCat.of k (cocycles₁ A))) :

                                                                  Alias of groupCohomology.coe_mapCocycles₁.

                                                                  @[deprecated groupCohomology.cocyclesMap_comp_isoCocycles₁_hom (since := "2025-06-25")]

                                                                  Alias of groupCohomology.cocyclesMap_comp_isoCocycles₁_hom.

                                                                  @[simp]
                                                                  theorem groupCohomology.mapCocycles₁_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :
                                                                  @[deprecated groupCohomology.mapCocycles₁_one (since := "2025-06-25")]
                                                                  theorem groupCohomology.mapOneCocycles_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :

                                                                  Alias of groupCohomology.mapCocycles₁_one.

                                                                  @[deprecated groupCohomology.map (since := "2025-06-09")]
                                                                  def groupCohomology.H1Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

                                                                  Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map H¹(H, A) ⟶ H¹(G, B).

                                                                  Equations
                                                                    Instances For
                                                                      @[deprecated groupCohomology.map_id (since := "2025-6-09")]

                                                                      Alias of groupCohomology.map_id.

                                                                      @[deprecated groupCohomology.map_comp (since := "2025-06-09")]
                                                                      theorem groupCohomology.H1Map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :

                                                                      Alias of groupCohomology.map_comp.

                                                                      @[deprecated groupCohomology.map_id_comp (since := "2025-06-09")]
                                                                      theorem groupCohomology.H1Map_id_comp {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :

                                                                      Alias of groupCohomology.map_id_comp.

                                                                      @[simp]
                                                                      theorem groupCohomology.H1π_comp_map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                                                      @[deprecated groupCohomology.H1π_comp_map (since := "2025-06-12")]
                                                                      theorem groupCohomology.H1π_comp_H1Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                                                      Alias of groupCohomology.H1π_comp_map.

                                                                      @[simp]
                                                                      theorem groupCohomology.map₁_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :
                                                                      map 1 φ 1 = 0
                                                                      @[deprecated groupCohomology.map₁_one (since := "2025-07-31")]
                                                                      theorem groupCohomology.map_1_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :
                                                                      map 1 φ 1 = 0

                                                                      Alias of groupCohomology.map₁_one.

                                                                      @[deprecated groupCohomology.map_1_one (since := "2025-06-09")]
                                                                      theorem groupCohomology.H1Map_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :
                                                                      map 1 φ 1 = 0

                                                                      Alias of groupCohomology.map₁_one.


                                                                      Alias of groupCohomology.map₁_one.

                                                                      noncomputable def groupCohomology.H1InfRes {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :

                                                                      The short complex H¹(G ⧸ S, A^S) ⟶ H¹(G, A) ⟶ H¹(S, A).

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem groupCohomology.H1InfRes_X₃ {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :
                                                                          @[simp]
                                                                          @[simp]
                                                                          theorem groupCohomology.H1InfRes_X₁ {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :
                                                                          @[simp]
                                                                          theorem groupCohomology.H1InfRes_X₂ {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :

                                                                          The inflation map H¹(G ⧸ S, A^S) ⟶ H¹(G, A) is a monomorphism.

                                                                          theorem groupCohomology.H1InfRes_exact {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :

                                                                          Given a G-representation A and a normal subgroup S ≤ G, the short complex H¹(G ⧸ S, A^S) ⟶ H¹(G, A) ⟶ H¹(S, A) is exact.

                                                                          noncomputable def groupCohomology.mapShortComplexH2 {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                                                          Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map from the short complex Fun(H, A) --d₁₂--> Fun(H × H, A) --d₂₃--> Fun(H × H × H, A) to Fun(G, B) --d₁₂--> Fun(G × G, B) --d₂₃--> Fun(G × G × G, B).

                                                                          Equations
                                                                            Instances For
                                                                              @[simp]
                                                                              theorem groupCohomology.mapShortComplexH2_τ₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                                                              @[simp]
                                                                              theorem groupCohomology.mapShortComplexH2_τ₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                                                              @[simp]
                                                                              theorem groupCohomology.mapShortComplexH2_τ₃ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                                                              @[simp]
                                                                              theorem groupCohomology.mapShortComplexH2_zero {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) :
                                                                              theorem groupCohomology.mapShortComplexH2_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) :
                                                                              @[reducible, inline]
                                                                              noncomputable abbrev groupCohomology.mapCocycles₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                                                              Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Z²(H, A) ⟶ Z²(G, B).

                                                                              Equations
                                                                                Instances For
                                                                                  @[deprecated groupCohomology.mapCocycles₂ (since := "2025-06-25")]
                                                                                  def groupCohomology.mapTwoCocycles {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                                                                  Alias of groupCohomology.mapCocycles₂.


                                                                                  Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Z²(H, A) ⟶ Z²(G, B).

                                                                                  Equations
                                                                                    Instances For
                                                                                      @[deprecated groupCohomology.mapCocycles₂_comp_i (since := "2025-06-25")]

                                                                                      Alias of groupCohomology.mapCocycles₂_comp_i.

                                                                                      @[simp]
                                                                                      theorem groupCohomology.coe_mapCocycles₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (x : (ModuleCat.of k (cocycles₂ A))) :
                                                                                      @[deprecated groupCohomology.coe_mapCocycles₂ (since := "2025-06-25")]
                                                                                      theorem groupCohomology.coe_mapTwoCocycles {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (x : (ModuleCat.of k (cocycles₂ A))) :

                                                                                      Alias of groupCohomology.coe_mapCocycles₂.

                                                                                      @[deprecated groupCohomology.cocyclesMap_comp_isoCocycles₂_hom (since := "2025-06-25")]

                                                                                      Alias of groupCohomology.cocyclesMap_comp_isoCocycles₂_hom.

                                                                                      @[deprecated groupCohomology.map (since := "2025-06-09")]
                                                                                      def groupCohomology.H2Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

                                                                                      Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map H²(H, A) ⟶ H²(G, B).

                                                                                      Equations
                                                                                        Instances For
                                                                                          @[deprecated groupCohomology.map_id (since := "2025-06-09")]

                                                                                          Alias of groupCohomology.map_id.

                                                                                          @[deprecated groupCohomology.map_comp (since := "2025-06-09")]
                                                                                          theorem groupCohomology.H2Map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :

                                                                                          Alias of groupCohomology.map_comp.

                                                                                          @[deprecated groupCohomology.map_id_comp (since := "2025-06-09")]
                                                                                          theorem groupCohomology.H2Map_id_comp {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :

                                                                                          Alias of groupCohomology.map_id_comp.

                                                                                          @[simp]
                                                                                          theorem groupCohomology.H2π_comp_map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                                                                          @[deprecated groupCohomology.H2π_comp_map (since := "2025-06-12")]
                                                                                          theorem groupCohomology.H2π_comp_H2Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                                                                          Alias of groupCohomology.H2π_comp_map.

                                                                                          The functor sending a representation to its complex of inhomogeneous cochains.

                                                                                          Equations
                                                                                            Instances For
                                                                                              @[simp]
                                                                                              theorem groupCohomology.cochainsFunctor_map (k G : Type u) [CommRing k] [Group G] {X✝ Y✝ : Rep k G} (f : X✝ Y✝) :
                                                                                              noncomputable def groupCohomology.functor (k G : Type u) [CommRing k] [Group G] (n : ) :

                                                                                              The functor sending a G-representation A to Hⁿ(G, A).

                                                                                              Equations
                                                                                                Instances For
                                                                                                  @[simp]
                                                                                                  theorem groupCohomology.functor_obj (k G : Type u) [CommRing k] [Group G] (n : ) (A : Rep k G) :
                                                                                                  @[simp]
                                                                                                  theorem groupCohomology.functor_map (k G : Type u) [CommRing k] [Group G] (n : ) {X✝ Y✝ : Rep k G} (φ : X✝ Y✝) :
                                                                                                  (functor k G n).map φ = map (MonoidHom.id G) φ n
                                                                                                  noncomputable def groupCohomology.resNatTrans (k : Type u) {G H : Type u} [CommRing k] [Group G] [Group H] (f : G →* H) (n : ) :
                                                                                                  functor k H n (Action.res (ModuleCat k) f).comp (functor k G n)

                                                                                                  Given a group homomorphism f : G →* H, this is a natural transformation between the functors sending A : Rep k H to Hⁿ(H, A) and to Hⁿ(G, Res(f)(A)).

                                                                                                  Equations
                                                                                                    Instances For
                                                                                                      @[simp]
                                                                                                      theorem groupCohomology.resNatTrans_app (k : Type u) {G H : Type u} [CommRing k] [Group G] [Group H] (f : G →* H) (n : ) (X : Rep k H) :
                                                                                                      noncomputable def groupCohomology.infNatTrans (k : Type u) {G : Type u} [CommRing k] [Group G] (S : Subgroup G) [S.Normal] (n : ) :

                                                                                                      Given a normal subgroup S ≤ G, this is a natural transformation between the functors sending A : Rep k G to Hⁿ(G ⧸ S, A^S) and to Hⁿ(G, A).

                                                                                                      Equations
                                                                                                        Instances For
                                                                                                          @[simp]
                                                                                                          theorem groupCohomology.infNatTrans_app (k : Type u) {G : Type u} [CommRing k] [Group G] (S : Subgroup G) [S.Normal] (n : ) (A : Rep k G) :