Documentation

Mathlib.RingTheory.Kaehler.Polynomial

The Kaehler differential module of polynomial algebras #

The relative differential module of a polynomial algebra R[σ] is the free module generated by { dx | x ∈ σ }. Also see KaehlerDifferential.mvPolynomialBasis.

Equations
    Instances For
      noncomputable def KaehlerDifferential.mvPolynomialBasis (R : Type u) [CommRing R] (σ : Type u_1) :

      { dx | x ∈ σ } forms a basis of the relative differential module of a polynomial algebra R[σ].

      Equations
        Instances For
          theorem KaehlerDifferential.mvPolynomialBasis_repr_D (R : Type u) [CommRing R] (σ : Type u_1) (x : MvPolynomial σ R) :
          (mvPolynomialBasis R σ).repr ((D R (MvPolynomial σ R)) x) = (MvPolynomial.mkDerivation R fun (x : σ) => Finsupp.single x 1) x
          @[simp]
          theorem KaehlerDifferential.mvPolynomialBasis_repr_apply (R : Type u) [CommRing R] (σ : Type u_1) (x : MvPolynomial σ R) (i : σ) :
          ((mvPolynomialBasis R σ).repr ((D R (MvPolynomial σ R)) x)) i = (MvPolynomial.pderiv i) x
          @[simp]
          theorem KaehlerDifferential.mvPolynomialBasis_apply (R : Type u) [CommRing R] (σ : Type u_1) (i : σ) :

          The relative differential module of the univariate polynomial algebra R[X] is isomorphic to R[X] as an R[X]-module.

          Equations
            Instances For