Documentation

Mathlib.RingTheory.MvPowerSeries.Trunc

Formal (multivariate) power series - Truncation #

TODO #

def MvPowerSeries.truncFun {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (φ : MvPowerSeries σ R) :

Auxiliary definition for the truncation function.

Equations
    Instances For
      theorem MvPowerSeries.coeff_truncFun {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
      MvPolynomial.coeff m (truncFun n φ) = if m < n then (coeff R m) φ else 0
      def MvPowerSeries.trunc {σ : Type u_1} (R : Type u_2) [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) :

      The nth truncation of a multivariate formal power series to a multivariate polynomial

      If f : MvPowerSeries σ R and n : σ →₀ ℕ is a (finitely-supported) function from σ to the naturals, then trunc' R n f is the multivariable power series obtained from f by keeping only the monomials $c\prod_i X_i^{a_i}$ where a i ≤ n i for all i and $a i < n ifor somei`.

      Equations
        Instances For
          theorem MvPowerSeries.coeff_trunc {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
          MvPolynomial.coeff m ((trunc R n) φ) = if m < n then (coeff R m) φ else 0
          @[simp]
          theorem MvPowerSeries.trunc_one {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (hnn : n 0) :
          (trunc R n) 1 = 1
          @[simp]
          theorem MvPowerSeries.trunc_C {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (hnn : n 0) (a : R) :
          (trunc R n) ((C σ R) a) = MvPolynomial.C a
          @[simp]
          theorem MvPowerSeries.trunc_C_mul {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (a : R) (p : MvPowerSeries σ R) :
          (trunc R n) ((C σ R) a * p) = MvPolynomial.C a * (trunc R n) p
          @[simp]
          theorem MvPowerSeries.trunc_map {σ : Type u_1} {R : Type u_2} {S : Type u_3} [DecidableEq σ] [CommSemiring R] [CommSemiring S] (n : σ →₀ ) (f : R →+* S) (p : MvPowerSeries σ R) :
          (trunc S n) ((map σ f) p) = (MvPolynomial.map f) ((trunc R n) p)
          def MvPowerSeries.truncFun' {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (φ : MvPowerSeries σ R) :

          Auxiliary definition for the truncation function.

          Equations
            Instances For
              theorem MvPowerSeries.coeff_truncFun' {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
              MvPolynomial.coeff m (truncFun' n φ) = if m n then (coeff R m) φ else 0

              Coefficients of the truncated function.

              def MvPowerSeries.trunc' {σ : Type u_1} (R : Type u_2) [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) :

              The nth truncation of a multivariate formal power series to a multivariate polynomial.

              If f : MvPowerSeries σ R and n : σ →₀ ℕ is a (finitely-supported) function from σ to the naturals, then trunc' R n f is the multivariable power series obtained from f by keeping only the monomials $c\prod_i X_i^{a_i}$ where a i ≤ n i for all i.

              Equations
                Instances For
                  theorem MvPowerSeries.coeff_trunc' {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
                  MvPolynomial.coeff m ((trunc' R n) φ) = if m n then (coeff R m) φ else 0

                  Coefficients of the truncation of a multivariate power series.

                  @[simp]
                  theorem MvPowerSeries.trunc'_one {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) :
                  (trunc' R n) 1 = 1

                  Truncation of the multivariate power series 1

                  @[simp]
                  theorem MvPowerSeries.trunc'_C {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (a : R) :
                  (trunc' R n) ((C σ R) a) = MvPolynomial.C a
                  theorem MvPowerSeries.coeff_mul_eq_coeff_trunc'_mul_trunc' {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (f g : MvPowerSeries σ R) {m : σ →₀ } (h : m n) :
                  (coeff R m) (f * g) = MvPolynomial.coeff m ((trunc' R n) f * (trunc' R n) g)

                  Coefficients of the truncation of a product of two multivariate power series

                  @[simp]
                  theorem MvPowerSeries.trunc'_C_mul {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (a : R) (p : MvPowerSeries σ R) :
                  (trunc' R n) ((C σ R) a * p) = MvPolynomial.C a * (trunc' R n) p
                  @[simp]
                  theorem MvPowerSeries.trunc'_map {σ : Type u_1} {R : Type u_2} {S : Type u_3} [DecidableEq σ] [CommSemiring R] [CommSemiring S] (n : σ →₀ ) (f : R →+* S) (p : MvPowerSeries σ R) :
                  (trunc' S n) ((map σ f) p) = (MvPolynomial.map f) ((trunc' R n) p)