Exponential map on algebras #
This file defines the exponential map IsNilpotent.exp
on ℚ
-algebras. The definition of
IsNilpotent.exp a
applies to any element a
in an algebra over ℚ
, though it yields meaningful
(non-junk) values only when a
is nilpotent.
The main result is IsNilpotent.exp_add_of_commute
, which establishes the expected connection
between the additive and multiplicative structures of A
for commuting nilpotent elements.
Additionally, IsNilpotent.isUnit_exp
shows that if a
is nilpotent in A
, then
IsNilpotent.exp a
is a unit in A
.
Note: Although the definition works with ℚ
-algebras, the results can be applied to any algebra
over a characteristic zero field.
Main definitions #
Tags #
algebra, exponential map, nilpotent
theorem
IsNilpotent.exp_add_of_commute
{A : Type u_1}
[Ring A]
[Module ℚ A]
{a b : A}
(h₁ : Commute a b)
(h₂ : IsNilpotent a)
(h₃ : IsNilpotent b)
:
@[deprecated IsNilpotent.isUnit_exp (since := "2025-03-11")]
theorem
IsNilpotent.exp_of_nilpotent_is_unit
{A : Type u_1}
[Ring A]
[Module ℚ A]
{a : A}
(h : IsNilpotent a)
:
Alias of IsNilpotent.isUnit_exp
.
theorem
IsNilpotent.exp_smul
{A : Type u_1}
[Ring A]
[Module ℚ A]
{G : Type u_2}
[Monoid G]
[MulSemiringAction G A]
(g : G)
{a : A}
(ha : IsNilpotent a)
:
theorem
Module.End.commute_exp_left_of_commute
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
[Module ℚ M]
[Module ℚ N]
{fM : End R M}
{fN : End R N}
{g : M →ₗ[R] N}
(hfM : IsNilpotent fM)
(hfN : IsNilpotent fN)
(h : fN ∘ₗ g = g ∘ₗ fM)
:
theorem
Module.End.exp_mul_of_derivation
(R : Type u_4)
(B : Type u_5)
[CommRing R]
[NonUnitalNonAssocRing B]
[Module R B]
[SMulCommClass R B B]
[IsScalarTower R B B]
[Module ℚ B]
(D : B →ₗ[R] B)
(h_der : ∀ (x y : B), D (x * y) = x * D y + D x * y)
(h_nil : IsNilpotent D)
(x y : B)
: