Documentation

Mathlib.RingTheory.Polynomial.Wronskian

Wronskian of a pair of polynomial #

This file defines Wronskian of a pair of polynomials, which is W(a, b) = ab' - a'b. We also prove basic properties of it.

Main declarations #

TODO #

def Polynomial.wronskian {R : Type u_1} [CommRing R] (a b : Polynomial R) :

Wronskian of a pair of polynomials, W(a, b) = ab' - a'b.

Equations
    Instances For

      Polynomial.wronskian as a bilinear map.

      Equations
        Instances For
          @[simp]
          theorem Polynomial.wronskianBilin_apply {R : Type u_1} [CommRing R] (a b : Polynomial R) :
          ((wronskianBilin R) a) b = a.wronskian b
          @[simp]
          theorem Polynomial.wronskian_zero_left {R : Type u_1} [CommRing R] (a : Polynomial R) :
          wronskian 0 a = 0
          @[simp]
          theorem Polynomial.wronskian_zero_right {R : Type u_1} [CommRing R] (a : Polynomial R) :
          a.wronskian 0 = 0
          theorem Polynomial.wronskian_add_right {R : Type u_1} [CommRing R] (a b c : Polynomial R) :
          a.wronskian (b + c) = a.wronskian b + a.wronskian c
          theorem Polynomial.wronskian_add_left {R : Type u_1} [CommRing R] (a b c : Polynomial R) :
          (a + b).wronskian c = a.wronskian c + b.wronskian c
          theorem Polynomial.wronskian_eq_of_sum_zero {R : Type u_1} [CommRing R] {a b c : Polynomial R} (hAdd : a + b + c = 0) :
          theorem Polynomial.degree_wronskian_lt_add {R : Type u_1} [CommRing R] {a b : Polynomial R} (ha : a 0) (hb : b 0) :

          Degree of W(a,b) is strictly less than the sum of degrees of a and b (both nonzero).

          natDegree version of the above theorem. Note this would be false with just (ha : a ≠ 0) (hb : b ≠ 0), as when a = b = 1we have(wronskian a b).natDegree = a.natDegree = b.natDegree = 0`.

          For coprime polynomials a and b, their Wronskian is zero if and only if their derivatives are zeros.