Documentation

Mathlib.RingTheory.PowerSeries.WellKnown

Definition of well-known power series #

In this file we define the following power series:

def PowerSeries.invUnitsSub {R : Type u_1} [Ring R] (u : Rˣ) :

The power series for 1 / (u - x).

Equations
    Instances For
      @[simp]
      theorem PowerSeries.coeff_invUnitsSub {R : Type u_1} [Ring R] (u : Rˣ) (n : ) :
      (coeff R n) (invUnitsSub u) = 1 /ₚ u ^ (n + 1)
      @[simp]
      @[simp]
      theorem PowerSeries.invUnitsSub_mul_X {R : Type u_1} [Ring R] (u : Rˣ) :
      invUnitsSub u * X = invUnitsSub u * (C R) u - 1
      @[simp]
      theorem PowerSeries.invUnitsSub_mul_sub {R : Type u_1} [Ring R] (u : Rˣ) :
      invUnitsSub u * ((C R) u - X) = 1
      theorem PowerSeries.map_invUnitsSub {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] (f : R →+* S) (u : Rˣ) :
      theorem PowerSeries.mk_one_mul_one_sub_eq_one (S : Type u_1) [CommRing S] :
      mk 1 * (1 - X) = 1

      (1 + X + X^2 + ...) * (1 - X) = 1.

      Note that the power series 1 + X + X^2 + ... is written as mk 1 where 1 is the constant function so that mk 1 is the power series with all coefficients equal to one.

      theorem PowerSeries.mk_one_pow_eq_mk_choose_add (S : Type u_1) [CommRing S] (d : ) :
      mk 1 ^ (d + 1) = mk fun (n : ) => ((d + n).choose d)

      Note that mk 1 is the constant function 1 so the power series 1 + X + X^2 + .... This theorem states that for any d : ℕ, (1 + X + X^2 + ... : S⟦X⟧) ^ (d + 1) is equal to the power series mk fun n => Nat.choose (d + n) d : S⟦X⟧.

      noncomputable def PowerSeries.invOneSubPow (S : Type u_1) [CommRing S] :

      Given a natural number d : ℕ and a commutative ring S, PowerSeries.invOneSubPow S d is the multiplicative inverse of (1 - X) ^ d in S⟦X⟧ˣ. When d is 0, PowerSeries.invOneSubPow S d will just be 1. When d is positive, PowerSeries.invOneSubPow S d will be the power series mk fun n => Nat.choose (d - 1 + n) (d - 1).

      Equations
        Instances For
          theorem PowerSeries.invOneSubPow_val_eq_mk_sub_one_add_choose_of_pos (S : Type u_1) [CommRing S] (d : ) (h : 0 < d) :
          (invOneSubPow S d) = mk fun (n : ) => ((d - 1 + n).choose (d - 1))
          theorem PowerSeries.invOneSubPow_val_succ_eq_mk_add_choose (S : Type u_1) [CommRing S] (d : ) :
          (invOneSubPow S (d + 1)) = mk fun (n : ) => ((d + n).choose d)

          The theorem PowerSeries.mk_one_mul_one_sub_eq_one implies that 1 - X is a unit in S⟦X⟧ whose inverse is the power series 1 + X + X^2 + .... This theorem states that for any d : ℕ, PowerSeries.invOneSubPow S d is equal to (1 - X)⁻¹ ^ d.

          theorem PowerSeries.mk_add_choose_mul_one_sub_pow_eq_one (S : Type u_1) [CommRing S] (d : ) :
          (mk fun (n : ) => ((d + n).choose d)) * (1 - X) ^ (d + 1) = 1
          def PowerSeries.exp (A : Type u_1) [Ring A] [Algebra A] :

          Power series for the exponential function at zero.

          Equations
            Instances For
              def PowerSeries.sin (A : Type u_1) [Ring A] [Algebra A] :

              Power series for the sine function at zero.

              Equations
                Instances For
                  def PowerSeries.cos (A : Type u_1) [Ring A] [Algebra A] :

                  Power series for the cosine function at zero.

                  Equations
                    Instances For
                      @[simp]
                      theorem PowerSeries.coeff_exp {A : Type u_1} [Ring A] [Algebra A] (n : ) :
                      (coeff A n) (exp A) = (algebraMap A) (1 / n.factorial)
                      @[simp]
                      theorem PowerSeries.constantCoeff_exp {A : Type u_1} [Ring A] [Algebra A] :
                      (constantCoeff A) (exp A) = 1
                      @[simp]
                      theorem PowerSeries.map_exp {A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra A] [Algebra A'] (f : A →+* A') :
                      (map f) (exp A) = exp A'
                      @[simp]
                      theorem PowerSeries.map_sin {A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra A] [Algebra A'] (f : A →+* A') :
                      (map f) (sin A) = sin A'
                      @[simp]
                      theorem PowerSeries.map_cos {A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra A] [Algebra A'] (f : A →+* A') :
                      (map f) (cos A) = cos A'
                      theorem PowerSeries.exp_mul_exp_eq_exp_add {A : Type u_1} [CommRing A] [Algebra A] (a b : A) :
                      (rescale a) (exp A) * (rescale b) (exp A) = (rescale (a + b)) (exp A)

                      Shows that $e^{aX} * e^{bX} = e^{(a + b)X}$

                      Shows that $e^{x} * e^{-x} = 1$

                      theorem PowerSeries.exp_pow_eq_rescale_exp {A : Type u_1} [CommRing A] [Algebra A] (k : ) :
                      exp A ^ k = (rescale k) (exp A)

                      Shows that $(e^{X})^k = e^{kX}$.

                      theorem PowerSeries.exp_pow_sum {A : Type u_1} [CommRing A] [Algebra A] (n : ) :
                      kFinset.range n, exp A ^ k = mk fun (p : ) => kFinset.range n, k ^ p * (algebraMap A) (↑p.factorial)⁻¹

                      Shows that $\sum_{k = 0}^{n - 1} (e^{X})^k = \sum_{p = 0}^{\infty} \sum_{k = 0}^{n - 1} \frac{k^p}{p!}X^p$.