Documentation

Mathlib.RingTheory.Spectrum.Prime.RingHom

Functoriality of the prime spectrum #

In this file we define the induced map on prime spectra induced by a ring homomorphism.

Main definitions #

@[reducible, inline]
abbrev RingHom.specComap {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (f : R →+* S) :

The pullback of an element of PrimeSpectrum S along a ring homomorphism f : R →+* S. The bundled continuous version is PrimeSpectrum.comap.

Equations
    Instances For
      @[simp]
      @[simp]
      theorem PrimeSpectrum.specComap_comp {R : Type u} {S : Type v} {S' : Type u_1} [CommSemiring R] [CommSemiring S] [CommSemiring S'] (f : R →+* S) (g : S →+* S') :
      theorem PrimeSpectrum.specComap_comp_apply {R : Type u} {S : Type v} {S' : Type u_1} [CommSemiring R] [CommSemiring S] [CommSemiring S'] (f : R →+* S) (g : S →+* S') (x : PrimeSpectrum S') :
      @[simp]

      RingHom.specComap of an isomorphism of rings as an equivalence of their prime spectra.

      Equations
        Instances For
          @[simp]
          theorem PrimeSpectrum.comapEquiv_apply {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (e : R ≃+* S) (a✝ : PrimeSpectrum R) :
          @[simp]
          def PrimeSpectrum.sigmaToPi {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] :
          (i : ι) × PrimeSpectrum (R i)PrimeSpectrum ((i : ι) → R i)

          The canonical map from a disjoint union of prime spectra of commutative semirings to the prime spectrum of the product semiring.

          Equations
            Instances For
              @[simp]
              theorem PrimeSpectrum.sigmaToPi_asIdeal {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] (a✝ : (i : ι) × PrimeSpectrum (R i)) :
              theorem PrimeSpectrum.sigmaToPi_injective {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] :
              theorem PrimeSpectrum.exists_maximal_notMem_range_sigmaToPi_of_infinite {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] [Infinite ι] [∀ (i : ι), Nontrivial (R i)] :
              ∃ (I : Ideal ((i : ι) → R i)) (x : I.IsMaximal), { asIdeal := I, isPrime := }Set.range (sigmaToPi R)

              An infinite product of nontrivial commutative semirings has a maximal ideal outside of the range of sigmaToPi, i.e. is not of the form πᵢ⁻¹(𝔭) for some prime 𝔭 ⊂ R i, where πᵢ : (Π i, R i) →+* R i is the projection. For a complete description of all prime ideals, see https://math.stackexchange.com/a/1563190.

              @[deprecated PrimeSpectrum.exists_maximal_notMem_range_sigmaToPi_of_infinite (since := "2025-05-24")]
              theorem PrimeSpectrum.exists_maximal_nmem_range_sigmaToPi_of_infinite {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] [Infinite ι] [∀ (i : ι), Nontrivial (R i)] :
              ∃ (I : Ideal ((i : ι) → R i)) (x : I.IsMaximal), { asIdeal := I, isPrime := }Set.range (sigmaToPi R)

              Alias of PrimeSpectrum.exists_maximal_notMem_range_sigmaToPi_of_infinite.


              An infinite product of nontrivial commutative semirings has a maximal ideal outside of the range of sigmaToPi, i.e. is not of the form πᵢ⁻¹(𝔭) for some prime 𝔭 ⊂ R i, where πᵢ : (Π i, R i) →+* R i is the projection. For a complete description of all prime ideals, see https://math.stackexchange.com/a/1563190.

              theorem PrimeSpectrum.sigmaToPi_not_surjective_of_infinite {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] [Infinite ι] [∀ (i : ι), Nontrivial (R i)] :
              theorem PrimeSpectrum.exists_comap_evalRingHom_eq {ι : Type u_3} {R : ιType u_4} [(i : ι) → CommRing (R i)] [Finite ι] (p : PrimeSpectrum ((i : ι) → R i)) :
              ∃ (i : ι) (q : PrimeSpectrum (R i)), (Pi.evalRingHom R i).specComap q = p
              theorem PrimeSpectrum.sigmaToPi_bijective {ι : Type u_3} (R : ιType u_4) [(i : ι) → CommRing (R i)] [Finite ι] :
              theorem PrimeSpectrum.iUnion_range_specComap_comp_evalRingHom {ι : Type u_3} {R : ιType u_4} [(i : ι) → CommRing (R i)] [Finite ι] {S : Type u_5} [CommRing S] (f : S →+* (i : ι) → R i) :
              noncomputable def Ideal.primeSpectrumOrderIsoZeroLocusOfSurj {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (hf : Function.Surjective f) {I : Ideal R} (hI : RingHom.ker f = I) :

              Let f : R →+* S be a surjective ring homomorphism, then Spec S is order-isomorphic to Z(I) where I = ker f.

              Equations
                Instances For

                  Spec (R / I) is order-isomorphic to Z(I).

                  Equations
                    Instances For

                      p is in the image of Spec S → Spec R if and only if p extended to S and restricted back to R is p.

                      A prime p is in the range of Spec S → Spec R if the fiber over p is nontrivial.