Documentation

Mathlib.RingTheory.Unramified.LocalRing

Unramified algebras over local rings #

Main results #

noncomputable instance Algebra.instResidueFieldOfLiesOver (R : Type u_1) {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (q : Ideal S) [q.IsPrime] [q.LiesOver p] :
Equations

    Let A be an essentially of finite type R-algebra, q be a prime over p. Then A is unramified at p if and only if κ(q)/κ(p) is separable, and pS_q = qS_q.