Documentation

Mathlib.RingTheory.WittVector.Defs

Witt vectors #

In this file we define the type of p-typical Witt vectors and ring operations on it. The ring axioms are verified in Mathlib/RingTheory/WittVector/Basic.lean.

For a fixed commutative ring R and prime p, a Witt vector x : π•Ž R is an infinite sequence β„• β†’ R of elements of R. However, the ring operations + and * are not defined in the obvious component-wise way. Instead, these operations are defined via certain polynomials using the machinery in Mathlib/RingTheory/WittVector/StructurePolynomial.lean. The nth value of the sum of two Witt vectors can depend on the 0-th through nth values of the summands. This effectively simulates a β€œcarrying” operation.

Main definitions #

Notation #

We use notation π•Ž R, entered \bbW, for the Witt vectors over R.

References #

structure WittVector (p : β„•) (R : Type u_1) :
Type u_1

WittVector p R is the ring of p-typical Witt vectors over the commutative ring R, where p is a prime number.

If p is invertible in R, this ring is isomorphic to β„• β†’ R (the product of β„• copies of R). If R is a ring of characteristic p, then WittVector p R is a ring of characteristic 0. The canonical example is WittVector p (ZMod p), which is isomorphic to the p-adic integers β„€_[p].

  • mk' :: (
    • coeff : β„• β†’ R

      x.coeff n is the nth coefficient of the Witt vector x.

      This concept does not have a standard name in the literature.

  • )
Instances For
    def WittVector.mk (p : β„•) {R : Type u_1} (coeff : β„• β†’ R) :

    Construct a Witt vector mk p x : π•Ž R from a sequence x of elements of R.

    This is preferred over WittVector.mk' because it has p explicit.

    Equations
      Instances For
        theorem WittVector.ext {p : β„•} {R : Type u_1} {x y : WittVector p R} (h : βˆ€ (n : β„•), x.coeff n = y.coeff n) :
        x = y
        theorem WittVector.ext_iff {p : β„•} {R : Type u_1} {x y : WittVector p R} :
        x = y ↔ βˆ€ (n : β„•), x.coeff n = y.coeff n
        @[simp]
        theorem WittVector.coeff_mk (p : β„•) {R : Type u_1} (x : β„• β†’ R) :
        (mk p x).coeff = x

        The polynomials used for defining the element 0 of the ring of Witt vectors.

        Equations
          Instances For

            The polynomials used for defining the element 1 of the ring of Witt vectors.

            Equations
              Instances For

                The polynomials used for defining the addition of the ring of Witt vectors.

                Equations
                  Instances For

                    The polynomials used for defining repeated addition of the ring of Witt vectors.

                    Equations
                      Instances For

                        The polynomials used for defining repeated addition of the ring of Witt vectors.

                        Equations
                          Instances For

                            The polynomials used for describing the subtraction of the ring of Witt vectors.

                            Equations
                              Instances For

                                The polynomials used for defining the multiplication of the ring of Witt vectors.

                                Equations
                                  Instances For

                                    The polynomials used for defining the negation of the ring of Witt vectors.

                                    Equations
                                      Instances For

                                        The polynomials used for defining repeated addition of the ring of Witt vectors.

                                        Equations
                                          Instances For
                                            def WittVector.peval {R : Type u_1} [CommRing R] {k : β„•} (Ο† : MvPolynomial (Fin k Γ— β„•) β„€) (x : Fin k β†’ β„• β†’ R) :
                                            R

                                            An auxiliary definition used in WittVector.eval. Evaluates a polynomial whose variables come from the disjoint union of k copies of β„•, with a curried evaluation x. This can be defined more generally but we use only a specific instance here.

                                            Equations
                                              Instances For
                                                def WittVector.eval {p : β„•} {R : Type u_1} [CommRing R] {k : β„•} (Ο† : β„• β†’ MvPolynomial (Fin k Γ— β„•) β„€) (x : Fin k β†’ WittVector p R) :

                                                Let Ο† be a family of polynomials, indexed by natural numbers, whose variables come from the disjoint union of k copies of β„•, and let xα΅’ be a Witt vector for 0 ≀ i < k.

                                                eval Ο† x evaluates Ο† mapping the variable X_(i, n) to the nth coefficient of xα΅’.

                                                Instantiating Ο† with certain polynomials defined in Mathlib/RingTheory/WittVector/StructurePolynomial.lean establishes the ring operations on π•Ž R. For example, WittVector.wittAdd is such a Ο† with k = 2; evaluating this at (xβ‚€, x₁) gives us the sum of two Witt vectors xβ‚€ + x₁.

                                                Equations
                                                  Instances For
                                                    instance WittVector.instZero {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                    Equations
                                                      instance WittVector.instInhabited {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                      Equations
                                                        instance WittVector.instOne {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                        Equations
                                                          instance WittVector.instAdd {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                          Equations
                                                            instance WittVector.instSub {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                            Equations
                                                              instance WittVector.hasNatScalar {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                              Equations
                                                                instance WittVector.hasIntScalar {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                                Equations
                                                                  instance WittVector.instMul {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                                  Equations
                                                                    instance WittVector.instNeg {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                                    Equations
                                                                      instance WittVector.hasNatPow {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                                      Equations
                                                                        instance WittVector.instNatCast {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                                        Equations
                                                                          instance WittVector.instIntCast {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                                          Equations
                                                                            @[simp]
                                                                            theorem WittVector.wittZero_eq_zero (p : β„•) [hp : Fact (Nat.Prime p)] (n : β„•) :
                                                                            wittZero p n = 0
                                                                            @[simp]
                                                                            @[simp]
                                                                            theorem WittVector.wittOne_pos_eq_zero (p : β„•) [hp : Fact (Nat.Prime p)] (n : β„•) (hn : 0 < n) :
                                                                            wittOne p n = 0
                                                                            @[simp]
                                                                            theorem WittVector.zero_coeff (p : β„•) (R : Type u_1) [hp : Fact (Nat.Prime p)] [CommRing R] (n : β„•) :
                                                                            coeff 0 n = 0
                                                                            @[simp]
                                                                            theorem WittVector.one_coeff_zero (p : β„•) (R : Type u_1) [hp : Fact (Nat.Prime p)] [CommRing R] :
                                                                            coeff 1 0 = 1
                                                                            @[simp]
                                                                            theorem WittVector.one_coeff_eq_of_pos (p : β„•) (R : Type u_1) [hp : Fact (Nat.Prime p)] [CommRing R] (n : β„•) (hn : 0 < n) :
                                                                            coeff 1 n = 0
                                                                            @[simp]
                                                                            theorem WittVector.v2_coeff {p' : β„•} {R' : Type u_2} (x y : WittVector p' R') (i : Fin 2) :
                                                                            (![x, y] i).coeff = ![x.coeff, y.coeff] i
                                                                            theorem WittVector.add_coeff {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (x y : WittVector p R) (n : β„•) :
                                                                            (x + y).coeff n = peval (wittAdd p n) ![x.coeff, y.coeff]
                                                                            theorem WittVector.sub_coeff {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (x y : WittVector p R) (n : β„•) :
                                                                            (x - y).coeff n = peval (wittSub p n) ![x.coeff, y.coeff]
                                                                            theorem WittVector.mul_coeff {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (x y : WittVector p R) (n : β„•) :
                                                                            (x * y).coeff n = peval (wittMul p n) ![x.coeff, y.coeff]
                                                                            theorem WittVector.neg_coeff {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (x : WittVector p R) (n : β„•) :
                                                                            (-x).coeff n = peval (wittNeg p n) ![x.coeff]
                                                                            theorem WittVector.nsmul_coeff {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (m : β„•) (x : WittVector p R) (n : β„•) :
                                                                            theorem WittVector.zsmul_coeff {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (m : β„€) (x : WittVector p R) (n : β„•) :
                                                                            theorem WittVector.pow_coeff {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (m : β„•) (x : WittVector p R) (n : β„•) :
                                                                            (x ^ m).coeff n = peval (wittPow p m n) ![x.coeff]
                                                                            theorem WittVector.add_coeff_zero {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (x y : WittVector p R) :
                                                                            (x + y).coeff 0 = x.coeff 0 + y.coeff 0
                                                                            theorem WittVector.mul_coeff_zero {p : β„•} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (x y : WittVector p R) :
                                                                            (x * y).coeff 0 = x.coeff 0 * y.coeff 0