Documentation

Mathlib.SetTheory.ZFC.Rank

Ordinal ranks of PSet and ZFSet #

In this file, we define the ordinal ranks of PSet and ZFSet. These ranks are the same as IsWellFounded.rank over , but are defined in a way that the universe levels of ranks are the same as the indexing types.

Definitions #

PSet rank #

noncomputable def PSet.rank :

The ordinal rank of a pre-set

Equations
    Instances For
      theorem PSet.rank_congr {x y : PSet.{u_1}} :
      x.Equiv yx.rank = y.rank
      theorem PSet.rank_lt_of_mem {x y : PSet.{u_1}} :
      y xy.rank < x.rank
      theorem PSet.rank_le_iff {o : Ordinal.{u_1}} {x : PSet.{u_1}} :
      x.rank o ∀ ⦃y : PSet.{u_1}⦄, y xy.rank < o
      theorem PSet.lt_rank_iff {o : Ordinal.{u_1}} {x : PSet.{u_1}} :
      o < x.rank yx, o y.rank
      theorem PSet.rank_mono {x y : PSet.{u}} (h : x y) :
      @[simp]
      @[simp]

      For the rank of ⋃₀ x, we only have rank (⋃₀ x) ≤ rank x ≤ rank (⋃₀ x) + 1.

      This inequality is split into rank_sUnion_le and le_succ_rank_sUnion.

      PSet.rank is equal to the IsWellFounded.rank over .

      ZFSet rank #

      noncomputable def ZFSet.rank :

      The ordinal rank of a ZFC set

      Equations
        Instances For
          theorem ZFSet.rank_lt_of_mem {x y : ZFSet.{u}} :
          y xy.rank < x.rank
          theorem ZFSet.rank_le_iff {x : ZFSet.{u}} {o : Ordinal.{u}} :
          x.rank o ∀ ⦃y : ZFSet.{u}⦄, y xy.rank < o
          theorem ZFSet.lt_rank_iff {x : ZFSet.{u}} {o : Ordinal.{u}} :
          o < x.rank yx, o y.rank
          theorem ZFSet.rank_mono {x y : ZFSet.{u}} (h : x y) :
          @[simp]
          @[simp]
          @[simp]
          theorem ZFSet.rank_union (x y : ZFSet.{u_1}) :
          (x y).rank = max x.rank y.rank

          For the rank of ⋃₀ x, we only have rank (⋃₀ x) ≤ rank x ≤ rank (⋃₀ x) + 1.

          This inequality is split into rank_sUnion_le and le_succ_rank_sUnion.

          @[simp]
          theorem ZFSet.rank_range {α : Type u_1} [Small.{u, u_1} α] (f : αZFSet.{u}) :
          (range f).rank = ⨆ (i : α), Order.succ (f i).rank