Documentation

Mathlib.Tactic.CategoryTheory.BicategoricalComp

Bicategorical composition ⊗≫ (composition up to associators) #

We provide f ⊗≫ g, the bicategoricalComp operation, which automatically inserts associators and unitors as needed to make the target of f match the source of g.

class CategoryTheory.BicategoricalCoherence {B : Type u} [Bicategory B] {a b : B} (f g : a b) :

A typeclass carrying a choice of bicategorical structural isomorphism between two objects. Used by the ⊗≫ bicategorical composition operator, and the coherence tactic.

  • iso : f g

    The chosen structural isomorphism between to 1-morphisms.

Instances

    Notation for identities up to unitors and associators.

    Equations
      Instances For
        @[reducible, inline]
        abbrev CategoryTheory.bicategoricalIso {B : Type u} [Bicategory B] {a b : B} (f g : a b) [BicategoricalCoherence f g] :
        f g

        Construct an isomorphism between two objects in a bicategorical category out of unitors and associators.

        Equations
          Instances For
            def CategoryTheory.bicategoricalComp {B : Type u} [Bicategory B] {a b : B} {f g h i : a b} [BicategoricalCoherence g h] (η : f g) (θ : h i) :
            f i

            Compose two morphisms in a bicategorical category, inserting unitors and associators between as necessary.

            Equations
              Instances For

                Compose two morphisms in a bicategorical category, inserting unitors and associators between as necessary.

                Equations
                  Instances For
                    def CategoryTheory.bicategoricalIsoComp {B : Type u} [Bicategory B] {a b : B} {f g h i : a b} [BicategoricalCoherence g h] (η : f g) (θ : h i) :
                    f i

                    Compose two isomorphisms in a bicategorical category, inserting unitors and associators between as necessary.

                    Equations
                      Instances For

                        Compose two isomorphisms in a bicategorical category, inserting unitors and associators between as necessary.

                        Equations
                          Instances For
                            Equations
                              @[simp]
                              @[simp]
                              @[simp]
                              @[simp]
                              theorem CategoryTheory.bicategoricalComp_refl {B : Type u} [Bicategory B] {a b : B} {f g h : a b} (η : f g) (θ : g h) :