Documentation

Mathlib.Tactic.NormNum.Prime

norm_num extensions on natural numbers #

This file provides a norm_num extension to prove that natural numbers are prime and compute its minimal factor. Todo: compute the list of all factors.

Implementation Notes #

For numbers larger than 25 bits, the primality proof produced by norm_num is an expression that is thousands of levels deep, and the Lean kernel seems to raise a stack overflow when type-checking that proof. If we want an implementation that works for larger primes, we should generate a proof that has a smaller depth.

Note: evalMinFac.aux does not raise a stack overflow, which can be checked by replacing the prf' in the recursive call by something like (.sort .zero)

theorem Mathlib.Meta.NormNum.not_prime_mul_of_ble (a b n : ) (h : a * b = n) (h₁ : a.ble 1 = false) (h₂ : b.ble 1 = false) :
def Mathlib.Meta.NormNum.deriveNotPrime (n d : ) (en : Q()) :
Q(¬Nat.Prime «$en»)

Produce a proof that n is not prime from a factor 1 < d < n. en should be the expression that is the natural number literal n.

Equations
    Instances For

      A predicate representing partial progress in a proof of minFac.

      Equations
        Instances For
          theorem Mathlib.Meta.NormNum.minFacHelper_0 (n : ) (h1 : Nat.ble 2 n = true) (h2 : 1 = n % 2) :
          theorem Mathlib.Meta.NormNum.minFacHelper_1 {n k k' : } (e : k + 2 = k') (h : MinFacHelper n k) (np : n.minFac k) :
          theorem Mathlib.Meta.NormNum.minFacHelper_2 {n k k' : } (e : k + 2 = k') (nk : ¬Nat.Prime k) (h : MinFacHelper n k) :
          theorem Mathlib.Meta.NormNum.minFacHelper_3 {n k k' : } (e : k + 2 = k') (nk : (n % k).beq 0 = false) (h : MinFacHelper n k) :
          theorem Mathlib.Meta.NormNum.isNat_minFac_2 {a a' : } :
          IsNat a a'a' % 2 = 0IsNat a.minFac 2
          theorem Mathlib.Meta.NormNum.isNat_minFac_3 {n n' : } (k : ) :
          IsNat n n'MinFacHelper n' k0 = n' % kIsNat n.minFac k
          theorem Mathlib.Meta.NormNum.isNat_minFac_4 {n n' k : } :
          IsNat n n'MinFacHelper n' k(k * k).ble n' = falseIsNat n.minFac n'

          The norm_num extension which identifies expressions of the form minFac n.

          Equations
            Instances For
              partial def Mathlib.Meta.NormNum.evalMinFac.aux (n : Q()) (sℕ : Q(AddMonoidWithOne )) (nn : Q()) (pn : Q(IsNat «$n» «$nn»)) (n' : ) (ek : Q()) (prf : Q(MinFacHelper «$nn» «$ek»)) :
              (c : Q()) × Q(IsNat «$n».minFac «$c»)
              def Mathlib.Meta.NormNum.evalMinFac.core (n : Q()) (sℕ : Q(AddMonoidWithOne )) (nn : Q()) (pn : Q(IsNat «$n» «$nn»)) (n' : ) :
              Equations
                Instances For
                  theorem Mathlib.Meta.NormNum.isNat_prime_2 {n n' : } :
                  IsNat n n'Nat.ble 2 n' = trueIsNat n'.minFac n'Nat.Prime n

                  The norm_num extension which identifies expressions of the form Nat.Prime n.

                  Equations
                    Instances For
                      def Mathlib.Meta.NormNum.evalNatPrime.core (n nn : Q()) (pn : Q(IsNat «$n» «$nn»)) (n' : ) :
                      Equations
                        Instances For