Documentation

Mathlib.Tactic.PNatToNat

pnat_to_nat #

This file implements the pnat_to_nat tactic that shifts PNats in the context to Nat.

Implementation details #

The implementation follows these steps:

  1. For each x : PNat in the context, add the hypothesis 0 < (↑x : ℕ).
  2. Translate arithmetic on PNat to Nat using the pnat_to_nat_coe simp set.

For each x : PNat in the context, add the hypothesis 0 < (↑x : ℕ).

Equations
    Instances For
      theorem Mathlib.Tactic.PNatToNat.coe_inj (m n : ℕ+) :
      m = n m = n
      theorem Mathlib.Tactic.PNatToNat.coe_lt_coe (m n : ℕ+) :
      m < n m < n
      theorem Mathlib.Tactic.PNatToNat.sub_coe (a b : ℕ+) :
      ↑(a - b) = a - 1 - b + 1

      pnat_to_nat shifts all PNats in the context to Nat, rewriting propositions about them. A typical use case is pnat_to_nat; omega.

      Equations
        Instances For