Documentation

Mathlib.Topology.Algebra.Constructions.DomMulAct

Topological space structure on Mᵈᵐᵃ and Mᵈᵃᵃ #

In this file we define TopologicalSpace structure on Mᵈᵐᵃ and Mᵈᵃᵃ and prove basic theorems about these topologies. The topologies on Mᵈᵐᵃ and Mᵈᵃᵃ are the same as the topology on M. Formally, they are induced by DomMulAct.mk.symm and DomAddAct.mk.symm, since the types aren't definitionally equal.

Tags #

topological space, group action, domain action

Put the same topological space structure on Mᵈᵐᵃ as on the original space.

Equations

    Put the same topological space structure on Mᵈᵃᵃ as on the original space.

    Equations

      DomMulAct.mk as a homeomorphism.

      Equations
        Instances For

          DomAddAct.mk as a homeomorphism.

          Equations
            Instances For
              @[simp]
              theorem DomMulAct.map_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
              Filter.map (⇑mk) (nhds x) = nhds (mk x)
              @[simp]
              theorem DomAddAct.map_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
              Filter.map (⇑mk) (nhds x) = nhds (mk x)
              @[simp]
              @[simp]
              @[simp]
              @[simp]
              @[simp]
              theorem DomMulAct.comap_mk.symm_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
              @[simp]
              theorem DomAddAct.comap_mk.symm_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :