Group and ring filter bases #
A GroupFilterBasis
is a FilterBasis
on a group with some properties relating
the basis to the group structure. The main theorem is that a GroupFilterBasis
on a group gives a topology on the group which makes it into a topological group
with neighborhoods of the neutral element generated by the given basis.
Main definitions and results #
Given a group G
and a ring R
:
GroupFilterBasis G
: the type of filter bases that will become neighborhood of1
for a topology onG
compatible with the group structureGroupFilterBasis.topology
: the associated topologyGroupFilterBasis.isTopologicalGroup
: the compatibility between the above topology and the group structureRingFilterBasis R
: the type of filter bases that will become neighborhood of0
for a topology onR
compatible with the ring structureRingFilterBasis.topology
: the associated topologyRingFilterBasis.isTopologicalRing
: the compatibility between the above topology and the ring structure
References #
- [N. Bourbaki, General Topology][bourbaki1966]
A GroupFilterBasis
on a group is a FilterBasis
satisfying some additional axioms.
Example : if G
is a topological group then the neighbourhoods of the identity are a
GroupFilterBasis
. Conversely given a GroupFilterBasis
one can define a topology
compatible with the group structure on G
.
Instances
An AddGroupFilterBasis
on an additive group is a FilterBasis
satisfying some additional
axioms. Example : if G
is a topological group then the neighbourhoods of the identity are an
AddGroupFilterBasis
. Conversely given an AddGroupFilterBasis
one can define a topology
compatible with the group structure on G
.
Instances
GroupFilterBasis
constructor in the commutative group case.
Equations
Instances For
AddGroupFilterBasis
constructor in the additive commutative group case.
Equations
Instances For
Equations
Equations
The trivial group filter basis consists of {1}
only. The associated topology
is discrete.
Equations
The trivial additive group filter basis consists of {0}
only. The associated
topology is discrete.
Equations
The topological space structure coming from a group filter basis.
Equations
Instances For
The topological space structure coming from an additive group filter basis.
Equations
Instances For
If a group is endowed with a topological structure coming from a group filter basis then, it's a topological group.
If an additive group is endowed with a topological structure coming from an additive group filter basis, then it's an additive topological group.
A RingFilterBasis
on a ring is a FilterBasis
satisfying some additional axioms.
Example : if R
is a topological ring then the neighbourhoods of the identity are a
RingFilterBasis
. Conversely given a RingFilterBasis
on a ring R
, one can define a
topology on R
which is compatible with the ring structure.
Instances
Equations
The topology associated to a ring filter basis. It has the given basis as a basis of neighborhoods of zero.
Equations
Instances For
If a ring is endowed with a topological structure coming from a ring filter basis then it's a topological ring.
A ModuleFilterBasis
on a module is a FilterBasis
satisfying some additional axioms.
Example : if M
is a topological module then the neighbourhoods of zero are a
ModuleFilterBasis
. Conversely given a ModuleFilterBasis
one can define a topology
compatible with the module structure on M
.
Instances For
Equations
If R
is discrete then the trivial additive group filter basis on any R
-module is a
module filter basis.
Equations
The topology associated to a module filter basis on a module over a topological ring. It has the given basis as a basis of neighborhoods of zero.
Equations
Instances For
The topology associated to a module filter basis on a module over a topological ring. It has the given basis as a basis of neighborhoods of zero. This version gets the ring topology by unification instead of type class inference.
Equations
Instances For
A topological add group with a basis of 𝓝 0
satisfying the axioms of ModuleFilterBasis
is a topological module.
This lemma is mathematically useless because one could obtain such a result by applying
ModuleFilterBasis.continuousSMul
and use the fact that group topologies are characterized
by their neighborhoods of 0 to obtain the ContinuousSMul
on the pre-existing topology.
But it turns out it's just easier to get it as a byproduct of the proof, so this is just a free quality-of-life improvement.
If a module is endowed with a topological structure coming from a module filter basis then it's a topological module.
Build a module filter basis from compatible ring and additive group filter bases.