Documentation

Mathlib.Topology.Algebra.FilterBasis

Group and ring filter bases #

A GroupFilterBasis is a FilterBasis on a group with some properties relating the basis to the group structure. The main theorem is that a GroupFilterBasis on a group gives a topology on the group which makes it into a topological group with neighborhoods of the neutral element generated by the given basis.

Main definitions and results #

Given a group G and a ring R:

References #

class GroupFilterBasis (G : Type u) [Group G] extends FilterBasis G :

A GroupFilterBasis on a group is a FilterBasis satisfying some additional axioms. Example : if G is a topological group then the neighbourhoods of the identity are a GroupFilterBasis. Conversely given a GroupFilterBasis one can define a topology compatible with the group structure on G.

Instances
    class AddGroupFilterBasis (A : Type u) [AddGroup A] extends FilterBasis A :

    An AddGroupFilterBasis on an additive group is a FilterBasis satisfying some additional axioms. Example : if G is a topological group then the neighbourhoods of the identity are an AddGroupFilterBasis. Conversely given an AddGroupFilterBasis one can define a topology compatible with the group structure on G.

    Instances
      def groupFilterBasisOfComm {G : Type u_1} [CommGroup G] (sets : Set (Set G)) (nonempty : sets.Nonempty) (inter_sets : ∀ (x y : Set G), x setsy setszsets, z x y) (one : Usets, 1 U) (mul : Usets, Vsets, V * V U) (inv : Usets, Vsets, V (fun (x : G) => x⁻¹) ⁻¹' U) :

      GroupFilterBasis constructor in the commutative group case.

      Equations
        Instances For
          def addGroupFilterBasisOfComm {G : Type u_1} [AddCommGroup G] (sets : Set (Set G)) (nonempty : sets.Nonempty) (inter_sets : ∀ (x y : Set G), x setsy setszsets, z x y) (one : Usets, 0 U) (mul : Usets, Vsets, V + V U) (inv : Usets, Vsets, V (fun (x : G) => -x) ⁻¹' U) :

          AddGroupFilterBasis constructor in the additive commutative group case.

          Equations
            Instances For
              theorem GroupFilterBasis.one {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
              U B1 U
              theorem AddGroupFilterBasis.zero {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
              U B0 U
              theorem GroupFilterBasis.mul {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
              U BVB, V * V U
              theorem AddGroupFilterBasis.add {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
              U BVB, V + V U
              theorem GroupFilterBasis.inv {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
              U BVB, V (fun (x : G) => x⁻¹) ⁻¹' U
              theorem AddGroupFilterBasis.neg {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
              U BVB, V (fun (x : G) => -x) ⁻¹' U
              theorem GroupFilterBasis.conj {G : Type u} [Group G] {B : GroupFilterBasis G} (x₀ : G) {U : Set G} :
              U BVB, V (fun (x : G) => x₀ * x * x₀⁻¹) ⁻¹' U
              theorem AddGroupFilterBasis.conj {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} (x₀ : G) {U : Set G} :
              U BVB, V (fun (x : G) => x₀ + x + -x₀) ⁻¹' U

              The trivial group filter basis consists of {1} only. The associated topology is discrete.

              Equations

                The trivial additive group filter basis consists of {0} only. The associated topology is discrete.

                Equations
                  theorem GroupFilterBasis.subset_mul_self {G : Type u} [Group G] (B : GroupFilterBasis G) {U : Set G} (h : U B) :
                  U U * U
                  theorem AddGroupFilterBasis.subset_add_self {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) {U : Set G} (h : U B) :
                  U U + U
                  def GroupFilterBasis.N {G : Type u} [Group G] (B : GroupFilterBasis G) :
                  GFilter G

                  The neighborhood function of a GroupFilterBasis.

                  Equations
                    Instances For

                      The neighborhood function of an AddGroupFilterBasis.

                      Equations
                        Instances For
                          @[simp]
                          theorem GroupFilterBasis.N_one {G : Type u} [Group G] (B : GroupFilterBasis G) :
                          B.N 1 = B.filter
                          @[simp]
                          theorem GroupFilterBasis.hasBasis {G : Type u} [Group G] (B : GroupFilterBasis G) (x : G) :
                          (B.N x).HasBasis (fun (V : Set G) => V B) fun (V : Set G) => (fun (y : G) => x * y) '' V
                          theorem AddGroupFilterBasis.hasBasis {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) (x : G) :
                          (B.N x).HasBasis (fun (V : Set G) => V B) fun (V : Set G) => (fun (y : G) => x + y) '' V

                          The topological space structure coming from a group filter basis.

                          Equations
                            Instances For

                              The topological space structure coming from an additive group filter basis.

                              Equations
                                Instances For
                                  theorem GroupFilterBasis.nhds_eq {G : Type u} [Group G] (B : GroupFilterBasis G) {x₀ : G} :
                                  nhds x₀ = B.N x₀
                                  theorem AddGroupFilterBasis.nhds_eq {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) {x₀ : G} :
                                  nhds x₀ = B.N x₀
                                  theorem GroupFilterBasis.nhds_hasBasis {G : Type u} [Group G] (B : GroupFilterBasis G) (x₀ : G) :
                                  (nhds x₀).HasBasis (fun (V : Set G) => V B) fun (V : Set G) => (fun (y : G) => x₀ * y) '' V
                                  theorem AddGroupFilterBasis.nhds_hasBasis {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) (x₀ : G) :
                                  (nhds x₀).HasBasis (fun (V : Set G) => V B) fun (V : Set G) => (fun (y : G) => x₀ + y) '' V
                                  theorem GroupFilterBasis.nhds_one_hasBasis {G : Type u} [Group G] (B : GroupFilterBasis G) :
                                  (nhds 1).HasBasis (fun (V : Set G) => V B) id
                                  theorem GroupFilterBasis.mem_nhds_one {G : Type u} [Group G] (B : GroupFilterBasis G) {U : Set G} (hU : U B) :
                                  U nhds 1
                                  theorem AddGroupFilterBasis.mem_nhds_zero {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) {U : Set G} (hU : U B) :
                                  U nhds 0
                                  @[instance 100]

                                  If a group is endowed with a topological structure coming from a group filter basis then, it's a topological group.

                                  @[instance 100]

                                  If an additive group is endowed with a topological structure coming from an additive group filter basis, then it's an additive topological group.

                                  class RingFilterBasis (R : Type u) [Ring R] extends AddGroupFilterBasis R :

                                  A RingFilterBasis on a ring is a FilterBasis satisfying some additional axioms. Example : if R is a topological ring then the neighbourhoods of the identity are a RingFilterBasis. Conversely given a RingFilterBasis on a ring R, one can define a topology on R which is compatible with the ring structure.

                                  Instances
                                    theorem RingFilterBasis.mul {R : Type u} [Ring R] (B : RingFilterBasis R) {U : Set R} (hU : U B) :
                                    VB, V * V U
                                    theorem RingFilterBasis.mul_left {R : Type u} [Ring R] (B : RingFilterBasis R) (x₀ : R) {U : Set R} (hU : U B) :
                                    VB, V (fun (x : R) => x₀ * x) ⁻¹' U
                                    theorem RingFilterBasis.mul_right {R : Type u} [Ring R] (B : RingFilterBasis R) (x₀ : R) {U : Set R} (hU : U B) :
                                    VB, V (fun (x : R) => x * x₀) ⁻¹' U

                                    The topology associated to a ring filter basis. It has the given basis as a basis of neighborhoods of zero.

                                    Equations
                                      Instances For
                                        @[instance 100]

                                        If a ring is endowed with a topological structure coming from a ring filter basis then it's a topological ring.

                                        structure ModuleFilterBasis (R : Type u_1) (M : Type u_2) [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] extends AddGroupFilterBasis M :
                                        Type u_2

                                        A ModuleFilterBasis on a module is a FilterBasis satisfying some additional axioms. Example : if M is a topological module then the neighbourhoods of zero are a ModuleFilterBasis. Conversely given a ModuleFilterBasis one can define a topology compatible with the module structure on M.

                                        Instances For
                                          theorem ModuleFilterBasis.smul {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) {U : Set M} (hU : U B) :
                                          Vnhds 0, WB, V W U
                                          theorem ModuleFilterBasis.smul_left {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) (x₀ : R) {U : Set M} (hU : U B) :
                                          VB, V (fun (x : M) => x₀ x) ⁻¹' U
                                          theorem ModuleFilterBasis.smul_right {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) (m₀ : M) {U : Set M} (hU : U B) :
                                          ∀ᶠ (x : R) in nhds 0, x m₀ U

                                          If R is discrete then the trivial additive group filter basis on any R-module is a module filter basis.

                                          Equations

                                            The topology associated to a module filter basis on a module over a topological ring. It has the given basis as a basis of neighborhoods of zero.

                                            Equations
                                              Instances For

                                                The topology associated to a module filter basis on a module over a topological ring. It has the given basis as a basis of neighborhoods of zero. This version gets the ring topology by unification instead of type class inference.

                                                Equations
                                                  Instances For
                                                    theorem ContinuousSMul.of_basis_zero {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] {ι : Type u_3} [IsTopologicalRing R] [TopologicalSpace M] [IsTopologicalAddGroup M] {p : ιProp} {b : ιSet M} (h : (nhds 0).HasBasis p b) (hsmul : ∀ {i : ι}, p iVnhds 0, ∃ (j : ι), p j V b j b i) (hsmul_left : ∀ (x₀ : R) {i : ι}, p i∃ (j : ι), p j Set.MapsTo (fun (x : M) => x₀ x) (b j) (b i)) (hsmul_right : ∀ (m₀ : M) {i : ι}, p i∀ᶠ (x : R) in nhds 0, x m₀ b i) :

                                                    A topological add group with a basis of 𝓝 0 satisfying the axioms of ModuleFilterBasis is a topological module.

                                                    This lemma is mathematically useless because one could obtain such a result by applying ModuleFilterBasis.continuousSMul and use the fact that group topologies are characterized by their neighborhoods of 0 to obtain the ContinuousSMul on the pre-existing topology.

                                                    But it turns out it's just easier to get it as a byproduct of the proof, so this is just a free quality-of-life improvement.

                                                    @[instance 100]

                                                    If a module is endowed with a topological structure coming from a module filter basis then it's a topological module.

                                                    def ModuleFilterBasis.ofBases {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] (BR : RingFilterBasis R) (BM : AddGroupFilterBasis M) (smul : ∀ {U : Set M}, U BMVBR, WBM, V W U) (smul_left : ∀ (x₀ : R) {U : Set M}, U BMVBM, V (fun (x : M) => x₀ x) ⁻¹' U) (smul_right : ∀ (m₀ : M) {U : Set M}, U BMVBR, V (fun (x : R) => x m₀) ⁻¹' U) :

                                                    Build a module filter basis from compatible ring and additive group filter bases.

                                                    Equations
                                                      Instances For