Documentation

Mathlib.Topology.Algebra.GroupCompletion

Completion of topological groups: #

This files endows the completion of a topological abelian group with a group structure. More precisely the instance UniformSpace.Completion.addGroup builds an abelian group structure on the completion of an abelian group endowed with a compatible uniform structure. Then the instance UniformSpace.Completion.isUniformAddGroup proves this group structure is compatible with the completed uniform structure. The compatibility condition is IsUniformAddGroup.

Main declarations: #

Beyond the instances explained above (that don't have to be explicitly invoked), the main constructions deal with continuous group morphisms.

Equations
    Equations
      Equations
        Equations
          theorem UniformSpace.Completion.coe_zero {α : Type u_3} [UniformSpace α] [Zero α] :
          0 = 0
          @[simp]
          theorem UniformSpace.Completion.coe_eq_zero_iff {α : Type u_3} [UniformSpace α] [Zero α] [T0Space α] {x : α} :
          x = 0 x = 0
          theorem UniformSpace.Completion.coe_neg {α : Type u_3} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] (a : α) :
          ↑(-a) = -a
          theorem UniformSpace.Completion.coe_sub {α : Type u_3} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] (a b : α) :
          ↑(a - b) = a - b
          theorem UniformSpace.Completion.coe_add {α : Type u_3} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] (a b : α) :
          ↑(a + b) = a + b

          The map from a group to its completion as a group hom.

          Equations
            Instances For
              @[simp]
              theorem UniformSpace.Completion.toCompl_apply {α : Type u_3} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] (a✝ : α) :
              toCompl a✝ = a✝
              def AddMonoidHom.extension {α : Type u_3} {β : Type u_4} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] [UniformSpace β] [AddGroup β] [IsUniformAddGroup β] [CompleteSpace β] [T0Space β] (f : α →+ β) (hf : Continuous f) :

              Extension to the completion of a continuous group hom.

              Equations
                Instances For
                  theorem AddMonoidHom.extension_coe {α : Type u_3} {β : Type u_4} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] [UniformSpace β] [AddGroup β] [IsUniformAddGroup β] [CompleteSpace β] [T0Space β] (f : α →+ β) (hf : Continuous f) (a : α) :
                  (f.extension hf) a = f a
                  theorem AddMonoidHom.continuous_extension {α : Type u_3} {β : Type u_4} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] [UniformSpace β] [AddGroup β] [IsUniformAddGroup β] [CompleteSpace β] [T0Space β] (f : α →+ β) (hf : Continuous f) :

                  Completion of a continuous group hom, as a group hom.

                  Equations
                    Instances For
                      theorem AddMonoidHom.continuous_completion {α : Type u_3} {β : Type u_4} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] [UniformSpace β] [AddGroup β] [IsUniformAddGroup β] (f : α →+ β) (hf : Continuous f) :
                      theorem AddMonoidHom.completion_coe {α : Type u_3} {β : Type u_4} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] [UniformSpace β] [AddGroup β] [IsUniformAddGroup β] (f : α →+ β) (hf : Continuous f) (a : α) :
                      (f.completion hf) a = (f a)
                      theorem AddMonoidHom.completion_add {α : Type u_3} [UniformSpace α] [AddGroup α] [IsUniformAddGroup α] {γ : Type u_5} [AddCommGroup γ] [UniformSpace γ] [IsUniformAddGroup γ] (f g : α →+ γ) (hf : Continuous f) (hg : Continuous g) :
                      (f + g).completion = f.completion hf + g.completion hg