Documentation

Mathlib.Topology.Algebra.Module.StrongDual

The topological strong dual of a module #

Main definitions #

References #

Tags #

StrongDual, polar

The StrongDual pairing as a bilinear form.

Equations
    Instances For
      @[deprecated strongDualPairing (since := "2025-08-3")]

      Alias of strongDualPairing.


      The StrongDual pairing as a bilinear form.

      Equations
        Instances For
          @[simp]
          theorem StrongDual.dualPairing_apply (R : Type u_1) [CommSemiring R] [TopologicalSpace R] (M : Type u_2) [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousAdd R] [ContinuousConstSMul R R] {v : StrongDual R M} {x : M} :
          ((strongDualPairing R M) v) x = v x
          @[deprecated StrongDual.dualPairing_apply (since := "2025-08-3")]

          Alias of StrongDual.dualPairing_apply.

          @[deprecated StrongDual.dualPairing_separatingLeft (since := "2025-08-3")]

          Alias of StrongDual.dualPairing_separatingLeft.

          def StrongDual.polar (R : Type u_1) [NormedCommRing R] {M : Type u_2} [AddCommMonoid M] [TopologicalSpace M] [Module R M] :
          Set MSet (StrongDual R M)

          Given a subset s in a monoid M (over a commutative ring R), the polar polar R s is the subset of StrongDual R M consisting of those functionals which evaluate to something of norm at most one at all points z ∈ s.

          Equations
            Instances For
              @[deprecated StrongDual.polar (since := "2025-08-3")]
              def NormedSpace.polar (R : Type u_1) [NormedCommRing R] {M : Type u_2} [AddCommMonoid M] [TopologicalSpace M] [Module R M] :
              Set MSet (StrongDual R M)

              Alias of StrongDual.polar.


              Given a subset s in a monoid M (over a commutative ring R), the polar polar R s is the subset of StrongDual R M consisting of those functionals which evaluate to something of norm at most one at all points z ∈ s.

              Equations
                Instances For
                  def StrongDual.polarSubmodule (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {M : Type u_2} [AddCommMonoid M] [TopologicalSpace M] [Module 𝕜 M] {S : Type u_3} [SetLike S M] [SMulMemClass S 𝕜 M] (m : S) :
                  Submodule 𝕜 (StrongDual 𝕜 M)

                  Given a subset s in a monoid M (over a field 𝕜) closed under scalar multiplication, the polar polarSubmodule 𝕜 s is the submodule of StrongDual 𝕜 M consisting of those functionals which evaluate to zero at all points z ∈ s.

                  Equations
                    Instances For
                      @[deprecated StrongDual.polarSubmodule (since := "2025-08-3")]
                      def NormedSpace.polarSubmodule (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {M : Type u_2} [AddCommMonoid M] [TopologicalSpace M] [Module 𝕜 M] {S : Type u_3} [SetLike S M] [SMulMemClass S 𝕜 M] (m : S) :
                      Submodule 𝕜 (StrongDual 𝕜 M)

                      Alias of StrongDual.polarSubmodule.


                      Given a subset s in a monoid M (over a field 𝕜) closed under scalar multiplication, the polar polarSubmodule 𝕜 s is the submodule of StrongDual 𝕜 M consisting of those functionals which evaluate to zero at all points z ∈ s.

                      Equations
                        Instances For
                          theorem StrongDual.polarSubmodule_eq_polar (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] (m : SubMulAction 𝕜 E) :
                          (polarSubmodule 𝕜 m) = polar 𝕜 m
                          @[deprecated StrongDual.polarSubmodule_eq_polar (since := "2025-08-3")]

                          Alias of StrongDual.polarSubmodule_eq_polar.

                          theorem StrongDual.mem_polar_iff (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {x' : StrongDual 𝕜 E} (s : Set E) :
                          x' polar 𝕜 s zs, x' z 1
                          @[deprecated StrongDual.mem_polar_iff (since := "2025-08-3")]
                          theorem NormedSpace.mem_polar_iff (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {x' : StrongDual 𝕜 E} (s : Set E) :
                          x' StrongDual.polar 𝕜 s zs, x' z 1

                          Alias of StrongDual.mem_polar_iff.

                          theorem StrongDual.polarSubmodule_eq_setOf (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {S : Type u_3} [SetLike S E] [SMulMemClass S 𝕜 E] (m : S) :
                          (polarSubmodule 𝕜 m) = {y : StrongDual 𝕜 E | xm, y x = 0}
                          @[deprecated StrongDual.polarSubmodule_eq_setOf (since := "2025-08-3")]
                          theorem NormedSpace.polarSubmodule_eq_setOf (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {S : Type u_3} [SetLike S E] [SMulMemClass S 𝕜 E] (m : S) :
                          (StrongDual.polarSubmodule 𝕜 m) = {y : StrongDual 𝕜 E | xm, y x = 0}

                          Alias of StrongDual.polarSubmodule_eq_setOf.

                          theorem StrongDual.mem_polarSubmodule (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {S : Type u_3} [SetLike S E] [SMulMemClass S 𝕜 E] (m : S) (y : StrongDual 𝕜 E) :
                          y polarSubmodule 𝕜 m xm, y x = 0
                          @[deprecated StrongDual.mem_polarSubmodule (since := "2025-08-3")]
                          theorem NormedSpace.mem_polarSubmodule (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {S : Type u_3} [SetLike S E] [SMulMemClass S 𝕜 E] (m : S) (y : StrongDual 𝕜 E) :
                          y StrongDual.polarSubmodule 𝕜 m xm, y x = 0

                          Alias of StrongDual.mem_polarSubmodule.

                          @[simp]
                          theorem StrongDual.zero_mem_polar (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] (s : Set E) :
                          0 polar 𝕜 s
                          @[deprecated StrongDual.zero_mem_polar (since := "2025-08-3")]
                          theorem NormedSpace.zero_mem_polar (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] (s : Set E) :

                          Alias of StrongDual.zero_mem_polar.

                          theorem StrongDual.polar_nonempty (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] (s : Set E) :
                          (polar 𝕜 s).Nonempty
                          @[deprecated StrongDual.polar_nonempty (since := "2025-08-3")]
                          theorem NormedSpace.polar_nonempty (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] (s : Set E) :

                          Alias of StrongDual.polar_nonempty.

                          @[simp]
                          theorem StrongDual.polar_empty (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] :
                          @[deprecated StrongDual.polar_empty (since := "2025-08-3")]

                          Alias of StrongDual.polar_empty.

                          @[simp]
                          theorem StrongDual.polar_singleton (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {a : E} :
                          polar 𝕜 {a} = {x : StrongDual 𝕜 E | x a 1}
                          @[deprecated StrongDual.polar_singleton (since := "2025-08-3")]
                          theorem NormedSpace.polar_singleton (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {a : E} :

                          Alias of StrongDual.polar_singleton.

                          theorem StrongDual.mem_polar_singleton (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {a : E} (y : StrongDual 𝕜 E) :
                          y polar 𝕜 {a} y a 1
                          @[deprecated StrongDual.mem_polar_singleton (since := "2025-08-3")]
                          theorem NormedSpace.mem_polar_singleton (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommMonoid E] [TopologicalSpace E] [Module 𝕜 E] {a : E} (y : StrongDual 𝕜 E) :

                          Alias of StrongDual.mem_polar_singleton.

                          @[deprecated StrongDual.polar_zero (since := "2025-08-3")]

                          Alias of StrongDual.polar_zero.

                          @[simp]
                          theorem StrongDual.polar_univ (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] :
                          @[deprecated StrongDual.polar_univ (since := "2025-08-3")]

                          Alias of StrongDual.polar_univ.