Documentation

Mathlib.Topology.Algebra.UniformConvergence

Algebraic facts about the topology of uniform convergence #

This file contains algebraic compatibility results about the uniform structure of uniform convergence / 𝔖-convergence. They will mostly be useful for defining strong topologies on the space of continuous linear maps between two topological vector spaces.

Main statements #

Implementation notes #

Like in Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean, we use the type aliases UniformFun (denoted α →ᵤ β) and UniformOnFun (denoted α →ᵤ[𝔖] β) for functions from α to β endowed with the structures of uniform convergence and 𝔖-convergence.

References #

Tags #

uniform convergence, strong dual

instance instOneUniformFun {α : Type u_1} {β : Type u_2} [One β] :
One (UniformFun α β)
Equations
    instance instZeroUniformFun {α : Type u_1} {β : Type u_2} [Zero β] :
    Equations
      @[simp]
      theorem UniformFun.toFun_one {α : Type u_1} {β : Type u_2} [One β] :
      toFun 1 = 1
      @[simp]
      theorem UniformFun.toFun_zero {α : Type u_1} {β : Type u_2} [Zero β] :
      toFun 0 = 0
      @[simp]
      theorem UniformFun.ofFun_one {α : Type u_1} {β : Type u_2} [One β] :
      ofFun 1 = 1
      @[simp]
      theorem UniformFun.ofFun_zero {α : Type u_1} {β : Type u_2} [Zero β] :
      ofFun 0 = 0
      instance instOneUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [One β] :
      One (UniformOnFun α β 𝔖)
      Equations
        instance instZeroUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Zero β] :
        Zero (UniformOnFun α β 𝔖)
        Equations
          @[simp]
          theorem UniformOnFun.toFun_one {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [One β] :
          (toFun 𝔖) 1 = 1
          @[simp]
          theorem UniformOnFun.toFun_zero {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Zero β] :
          (toFun 𝔖) 0 = 0
          @[simp]
          theorem UniformOnFun.one_apply {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [One β] :
          (ofFun 𝔖) 1 = 1
          @[simp]
          theorem UniformOnFun.zero_apply {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Zero β] :
          (ofFun 𝔖) 0 = 0
          instance instMulUniformFun {α : Type u_1} {β : Type u_2} [Mul β] :
          Mul (UniformFun α β)
          Equations
            instance instAddUniformFun {α : Type u_1} {β : Type u_2} [Add β] :
            Add (UniformFun α β)
            Equations
              @[simp]
              theorem UniformFun.toFun_mul {α : Type u_1} {β : Type u_2} [Mul β] (f g : UniformFun α β) :
              toFun (f * g) = toFun f * toFun g
              @[simp]
              theorem UniformFun.toFun_add {α : Type u_1} {β : Type u_2} [Add β] (f g : UniformFun α β) :
              toFun (f + g) = toFun f + toFun g
              @[simp]
              theorem UniformFun.ofFun_mul {α : Type u_1} {β : Type u_2} [Mul β] (f g : αβ) :
              ofFun (f * g) = ofFun f * ofFun g
              @[simp]
              theorem UniformFun.ofFun_add {α : Type u_1} {β : Type u_2} [Add β] (f g : αβ) :
              ofFun (f + g) = ofFun f + ofFun g
              instance instMulUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Mul β] :
              Mul (UniformOnFun α β 𝔖)
              Equations
                instance instAddUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Add β] :
                Add (UniformOnFun α β 𝔖)
                Equations
                  @[simp]
                  theorem UniformOnFun.toFun_mul {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Mul β] (f g : UniformOnFun α β 𝔖) :
                  (toFun 𝔖) (f * g) = (toFun 𝔖) f * (toFun 𝔖) g
                  @[simp]
                  theorem UniformOnFun.toFun_add {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Add β] (f g : UniformOnFun α β 𝔖) :
                  (toFun 𝔖) (f + g) = (toFun 𝔖) f + (toFun 𝔖) g
                  @[simp]
                  theorem UniformOnFun.ofFun_mul {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Mul β] (f g : αβ) :
                  (ofFun 𝔖) (f * g) = (ofFun 𝔖) f * (ofFun 𝔖) g
                  @[simp]
                  theorem UniformOnFun.ofFun_add {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Add β] (f g : αβ) :
                  (ofFun 𝔖) (f + g) = (ofFun 𝔖) f + (ofFun 𝔖) g
                  instance instInvUniformFun {α : Type u_1} {β : Type u_2} [Inv β] :
                  Inv (UniformFun α β)
                  Equations
                    instance instNegUniformFun {α : Type u_1} {β : Type u_2} [Neg β] :
                    Neg (UniformFun α β)
                    Equations
                      @[simp]
                      theorem UniformFun.toFun_inv {α : Type u_1} {β : Type u_2} [Inv β] (f : UniformFun α β) :
                      @[simp]
                      theorem UniformFun.toFun_neg {α : Type u_1} {β : Type u_2} [Neg β] (f : UniformFun α β) :
                      @[simp]
                      theorem UniformFun.ofFun_inv {α : Type u_1} {β : Type u_2} [Inv β] (f : αβ) :
                      @[simp]
                      theorem UniformFun.ofFun_neg {α : Type u_1} {β : Type u_2} [Neg β] (f : αβ) :
                      instance instInvUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Inv β] :
                      Inv (UniformOnFun α β 𝔖)
                      Equations
                        instance instNegUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Neg β] :
                        Neg (UniformOnFun α β 𝔖)
                        Equations
                          @[simp]
                          theorem UniformOnFun.toFun_inv {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Inv β] (f : UniformOnFun α β 𝔖) :
                          (toFun 𝔖) f⁻¹ = ((toFun 𝔖) f)⁻¹
                          @[simp]
                          theorem UniformOnFun.toFun_neg {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Neg β] (f : UniformOnFun α β 𝔖) :
                          (toFun 𝔖) (-f) = -(toFun 𝔖) f
                          @[simp]
                          theorem UniformOnFun.ofFun_inv {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Inv β] (f : αβ) :
                          (ofFun 𝔖) f⁻¹ = ((ofFun 𝔖) f)⁻¹
                          @[simp]
                          theorem UniformOnFun.ofFun_neg {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Neg β] (f : αβ) :
                          (ofFun 𝔖) (-f) = -(ofFun 𝔖) f
                          instance instDivUniformFun {α : Type u_1} {β : Type u_2} [Div β] :
                          Div (UniformFun α β)
                          Equations
                            instance instSubUniformFun {α : Type u_1} {β : Type u_2} [Sub β] :
                            Sub (UniformFun α β)
                            Equations
                              @[simp]
                              theorem UniformFun.toFun_div {α : Type u_1} {β : Type u_2} [Div β] (f g : UniformFun α β) :
                              toFun (f / g) = toFun f / toFun g
                              @[simp]
                              theorem UniformFun.toFun_sub {α : Type u_1} {β : Type u_2} [Sub β] (f g : UniformFun α β) :
                              toFun (f - g) = toFun f - toFun g
                              @[simp]
                              theorem UniformFun.ofFun_div {α : Type u_1} {β : Type u_2} [Div β] (f g : αβ) :
                              ofFun (f / g) = ofFun f / ofFun g
                              @[simp]
                              theorem UniformFun.ofFun_sub {α : Type u_1} {β : Type u_2} [Sub β] (f g : αβ) :
                              ofFun (f - g) = ofFun f - ofFun g
                              instance instDivUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Div β] :
                              Div (UniformOnFun α β 𝔖)
                              Equations
                                instance instSubUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Sub β] :
                                Sub (UniformOnFun α β 𝔖)
                                Equations
                                  @[simp]
                                  theorem UniformOnFun.toFun_div {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Div β] (f g : UniformOnFun α β 𝔖) :
                                  (toFun 𝔖) (f / g) = (toFun 𝔖) f / (toFun 𝔖) g
                                  @[simp]
                                  theorem UniformOnFun.toFun_sub {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Sub β] (f g : UniformOnFun α β 𝔖) :
                                  (toFun 𝔖) (f - g) = (toFun 𝔖) f - (toFun 𝔖) g
                                  @[simp]
                                  theorem UniformOnFun.ofFun_div {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Div β] (f g : αβ) :
                                  (ofFun 𝔖) (f / g) = (ofFun 𝔖) f / (ofFun 𝔖) g
                                  @[simp]
                                  theorem UniformOnFun.ofFun_sub {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Sub β] (f g : αβ) :
                                  (ofFun 𝔖) (f - g) = (ofFun 𝔖) f - (ofFun 𝔖) g
                                  instance instMonoidUniformFun {α : Type u_1} {β : Type u_2} [Monoid β] :
                                  Equations
                                    instance instAddMonoidUniformFun {α : Type u_1} {β : Type u_2} [AddMonoid β] :
                                    Equations
                                      instance instMonoidUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Monoid β] :
                                      Monoid (UniformOnFun α β 𝔖)
                                      Equations
                                        instance instAddMonoidUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [AddMonoid β] :
                                        AddMonoid (UniformOnFun α β 𝔖)
                                        Equations
                                          instance instCommMonoidUniformFun {α : Type u_1} {β : Type u_2} [CommMonoid β] :
                                          Equations
                                            instance instAddCommMonoidUniformFun {α : Type u_1} {β : Type u_2} [AddCommMonoid β] :
                                            Equations
                                              instance instCommMonoidUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [CommMonoid β] :
                                              Equations
                                                instance instAddCommMonoidUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [AddCommMonoid β] :
                                                Equations
                                                  instance instGroupUniformFun {α : Type u_1} {β : Type u_2} [Group β] :
                                                  Equations
                                                    instance instAddGroupUniformFun {α : Type u_1} {β : Type u_2} [AddGroup β] :
                                                    Equations
                                                      instance instGroupUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [Group β] :
                                                      Group (UniformOnFun α β 𝔖)
                                                      Equations
                                                        instance instAddGroupUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [AddGroup β] :
                                                        AddGroup (UniformOnFun α β 𝔖)
                                                        Equations
                                                          instance instCommGroupUniformFun {α : Type u_1} {β : Type u_2} [CommGroup β] :
                                                          Equations
                                                            instance instAddCommGroupUniformFun {α : Type u_1} {β : Type u_2} [AddCommGroup β] :
                                                            Equations
                                                              instance instCommGroupUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [CommGroup β] :
                                                              CommGroup (UniformOnFun α β 𝔖)
                                                              Equations
                                                                instance instAddCommGroupUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} [AddCommGroup β] :
                                                                Equations
                                                                  instance instSMulUniformFun {α : Type u_1} {β : Type u_2} {M : Type u_5} [SMul M β] :
                                                                  SMul M (UniformFun α β)
                                                                  Equations
                                                                    @[simp]
                                                                    theorem UniformFun.toFun_smul {α : Type u_1} {β : Type u_2} {M : Type u_5} [SMul M β] (c : M) (f : UniformFun α β) :
                                                                    toFun (c f) = c toFun f
                                                                    @[simp]
                                                                    theorem UniformFun.ofFun_smul {α : Type u_1} {β : Type u_2} {M : Type u_5} [SMul M β] (c : M) (f : αβ) :
                                                                    ofFun (c f) = c ofFun f
                                                                    instance instSMulUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} {M : Type u_5} [SMul M β] :
                                                                    SMul M (UniformOnFun α β 𝔖)
                                                                    Equations
                                                                      @[simp]
                                                                      theorem UniformOnFun.toFun_smul {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} {M : Type u_5} [SMul M β] (c : M) (f : UniformOnFun α β 𝔖) :
                                                                      (toFun 𝔖) (c f) = c (toFun 𝔖) f
                                                                      @[simp]
                                                                      theorem UniformOnFun.ofFun_smul {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} {M : Type u_5} [SMul M β] (c : M) (f : αβ) :
                                                                      (ofFun 𝔖) (c f) = c (ofFun 𝔖) f
                                                                      instance instIsScalarTowerUniformFun {α : Type u_1} {β : Type u_2} {M : Type u_5} {N : Type u_6} [SMul M N] [SMul M β] [SMul N β] [IsScalarTower M N β] :
                                                                      instance instIsScalarTowerUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} {M : Type u_5} {N : Type u_6} [SMul M N] [SMul M β] [SMul N β] [IsScalarTower M N β] :
                                                                      IsScalarTower M N (UniformOnFun α β 𝔖)
                                                                      instance instSMulCommClassUniformFun {α : Type u_1} {β : Type u_2} {M : Type u_5} {N : Type u_6} [SMul M β] [SMul N β] [SMulCommClass M N β] :
                                                                      instance instSMulCommClassUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} {M : Type u_5} {N : Type u_6} [SMul M β] [SMul N β] [SMulCommClass M N β] :
                                                                      SMulCommClass M N (UniformOnFun α β 𝔖)
                                                                      instance instMulActionUniformFun {α : Type u_1} {β : Type u_2} {M : Type u_5} [Monoid M] [MulAction M β] :
                                                                      Equations
                                                                        instance instMulActionUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} {M : Type u_5} [Monoid M] [MulAction M β] :
                                                                        MulAction M (UniformOnFun α β 𝔖)
                                                                        Equations
                                                                          instance instDistribMulActionUniformFun {α : Type u_1} {β : Type u_2} {M : Type u_5} [Monoid M] [AddMonoid β] [DistribMulAction M β] :
                                                                          Equations
                                                                            instance instDistribMulActionUniformOnFun {α : Type u_1} {β : Type u_2} {𝔖 : Set (Set α)} {M : Type u_5} [Monoid M] [AddMonoid β] [DistribMulAction M β] :
                                                                            Equations
                                                                              instance instModuleUniformFun {α : Type u_1} {β : Type u_2} {R : Type u_4} [Semiring R] [AddCommMonoid β] [Module R β] :
                                                                              Module R (UniformFun α β)
                                                                              Equations
                                                                                instance instModuleUniformOnFun {α : Type u_1} {β : Type u_2} {R : Type u_4} {𝔖 : Set (Set α)} [Semiring R] [AddCommMonoid β] [Module R β] :
                                                                                Module R (UniformOnFun α β 𝔖)
                                                                                Equations

                                                                                  If G is a uniform group, then α →ᵤ G is a uniform group as well.

                                                                                  If G is a uniform additive group, then α →ᵤ G is a uniform additive group as well.

                                                                                  theorem UniformFun.hasBasis_nhds_one_of_basis {α : Type u_1} {G : Type u_2} {ι : Type u_3} [Group G] [UniformSpace G] [IsUniformGroup G] {p : ιProp} {b : ιSet G} (h : (nhds 1).HasBasis p b) :
                                                                                  (nhds 1).HasBasis p fun (i : ι) => {f : UniformFun α G | ∀ (x : α), toFun f x b i}
                                                                                  theorem UniformFun.hasBasis_nhds_zero_of_basis {α : Type u_1} {G : Type u_2} {ι : Type u_3} [AddGroup G] [UniformSpace G] [IsUniformAddGroup G] {p : ιProp} {b : ιSet G} (h : (nhds 0).HasBasis p b) :
                                                                                  (nhds 0).HasBasis p fun (i : ι) => {f : UniformFun α G | ∀ (x : α), toFun f x b i}
                                                                                  theorem UniformFun.hasBasis_nhds_one {α : Type u_1} {G : Type u_2} [Group G] [UniformSpace G] [IsUniformGroup G] :
                                                                                  (nhds 1).HasBasis (fun (V : Set G) => V nhds 1) fun (V : Set G) => {f : αG | ∀ (x : α), f x V}
                                                                                  theorem UniformFun.hasBasis_nhds_zero {α : Type u_1} {G : Type u_2} [AddGroup G] [UniformSpace G] [IsUniformAddGroup G] :
                                                                                  (nhds 0).HasBasis (fun (V : Set G) => V nhds 0) fun (V : Set G) => {f : αG | ∀ (x : α), f x V}
                                                                                  instance instIsUniformGroupUniformOnFun {α : Type u_1} {G : Type u_2} [Group G] {𝔖 : Set (Set α)} [UniformSpace G] [IsUniformGroup G] :

                                                                                  Let 𝔖 : Set (Set α). If G is a uniform group, then α →ᵤ[𝔖] G is a uniform group as well.

                                                                                  instance instIsUniformAddGroupUniformOnFun {α : Type u_1} {G : Type u_2} [AddGroup G] {𝔖 : Set (Set α)} [UniformSpace G] [IsUniformAddGroup G] :

                                                                                  Let 𝔖 : Set (Set α). If G is a uniform additive group, then α →ᵤ[𝔖] G is a uniform additive group as well.

                                                                                  theorem UniformOnFun.hasBasis_nhds_one_of_basis {α : Type u_1} {G : Type u_2} {ι : Type u_3} [Group G] [UniformSpace G] [IsUniformGroup G] (𝔖 : Set (Set α)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (fun (x1 x2 : Set α) => x1 x2) 𝔖) {p : ιProp} {b : ιSet G} (h : (nhds 1).HasBasis p b) :
                                                                                  (nhds 1).HasBasis (fun (Si : Set α × ι) => Si.1 𝔖 p Si.2) fun (Si : Set α × ι) => {f : UniformOnFun α G 𝔖 | xSi.1, (toFun 𝔖) f x b Si.2}
                                                                                  theorem UniformOnFun.hasBasis_nhds_zero_of_basis {α : Type u_1} {G : Type u_2} {ι : Type u_3} [AddGroup G] [UniformSpace G] [IsUniformAddGroup G] (𝔖 : Set (Set α)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (fun (x1 x2 : Set α) => x1 x2) 𝔖) {p : ιProp} {b : ιSet G} (h : (nhds 0).HasBasis p b) :
                                                                                  (nhds 0).HasBasis (fun (Si : Set α × ι) => Si.1 𝔖 p Si.2) fun (Si : Set α × ι) => {f : UniformOnFun α G 𝔖 | xSi.1, (toFun 𝔖) f x b Si.2}
                                                                                  theorem UniformOnFun.hasBasis_nhds_one {α : Type u_1} {G : Type u_2} [Group G] [UniformSpace G] [IsUniformGroup G] (𝔖 : Set (Set α)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (fun (x1 x2 : Set α) => x1 x2) 𝔖) :
                                                                                  (nhds 1).HasBasis (fun (SV : Set α × Set G) => SV.1 𝔖 SV.2 nhds 1) fun (SV : Set α × Set G) => {f : UniformOnFun α G 𝔖 | xSV.1, f x SV.2}
                                                                                  theorem UniformOnFun.hasBasis_nhds_zero {α : Type u_1} {G : Type u_2} [AddGroup G] [UniformSpace G] [IsUniformAddGroup G] (𝔖 : Set (Set α)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (fun (x1 x2 : Set α) => x1 x2) 𝔖) :
                                                                                  (nhds 0).HasBasis (fun (SV : Set α × Set G) => SV.1 𝔖 SV.2 nhds 0) fun (SV : Set α × Set G) => {f : UniformOnFun α G 𝔖 | xSV.1, f x SV.2}
                                                                                  @[simp]
                                                                                  theorem UniformOnFun.ofFun_prod {α : Type u_1} {ι : Type u_3} {𝔖 : Set (Set α)} {β : Type u_4} [CommMonoid β] {f : ιαβ} (I : Finset ι) :
                                                                                  (ofFun 𝔖) (∏ iI, f i) = iI, (ofFun 𝔖) (f i)
                                                                                  @[simp]
                                                                                  theorem UniformOnFun.ofFun_sum {α : Type u_1} {ι : Type u_3} {𝔖 : Set (Set α)} {β : Type u_4} [AddCommMonoid β] {f : ιαβ} (I : Finset ι) :
                                                                                  (ofFun 𝔖) (∑ iI, f i) = iI, (ofFun 𝔖) (f i)
                                                                                  @[simp]
                                                                                  theorem UniformOnFun.toFun_prod {α : Type u_1} {ι : Type u_3} {𝔖 : Set (Set α)} {β : Type u_4} [CommMonoid β] {f : ιαβ} (I : Finset ι) :
                                                                                  (toFun 𝔖) (∏ iI, f i) = iI, (toFun 𝔖) (f i)
                                                                                  @[simp]
                                                                                  theorem UniformOnFun.toFun_sum {α : Type u_1} {ι : Type u_3} {𝔖 : Set (Set α)} {β : Type u_4} [AddCommMonoid β] {f : ιαβ} (I : Finset ι) :
                                                                                  (toFun 𝔖) (∑ iI, f i) = iI, (toFun 𝔖) (f i)
                                                                                  @[simp]
                                                                                  theorem UniformFun.ofFun_prod {α : Type u_1} {ι : Type u_3} {β : Type u_4} [CommMonoid β] {f : ιαβ} (I : Finset ι) :
                                                                                  ofFun (∏ iI, f i) = iI, ofFun (f i)
                                                                                  @[simp]
                                                                                  theorem UniformFun.ofFun_sum {α : Type u_1} {ι : Type u_3} {β : Type u_4} [AddCommMonoid β] {f : ιαβ} (I : Finset ι) :
                                                                                  ofFun (∑ iI, f i) = iI, ofFun (f i)
                                                                                  @[simp]
                                                                                  theorem UniformFun.toFun_prod {α : Type u_1} {ι : Type u_3} {β : Type u_4} [CommMonoid β] {f : ιαβ} (I : Finset ι) :
                                                                                  toFun (∏ iI, f i) = iI, toFun (f i)
                                                                                  @[simp]
                                                                                  theorem UniformFun.toFun_sum {α : Type u_1} {ι : Type u_3} {β : Type u_4} [AddCommMonoid β] {f : ιαβ} (I : Finset ι) :
                                                                                  toFun (∑ iI, f i) = iI, toFun (f i)