Documentation

Mathlib.Topology.ContinuousMap.Compact

Continuous functions on a compact space #

Continuous functions C(α, β) from a compact space α to a metric space β are automatically bounded, and so acquire various structures inherited from α →ᵇ β.

This file transfers these structures, and restates some lemmas characterising these structures.

If you need a lemma which is proved about α →ᵇ β but not for C(α, β) when α is compact, you should restate it here. You can also use ContinuousMap.equivBoundedOfCompact to move functions back and forth.

When α is compact, the bounded continuous maps α →ᵇ β are equivalent to C(α, β).

Equations
    Instances For

      When α is compact, the bounded continuous maps α →ᵇ 𝕜 are additively equivalent to C(α, 𝕜).

      Equations
        Instances For
          Equations

            When α is compact, and β is a metric space, the bounded continuous maps α →ᵇ β are isometric to C(α, β).

            Equations
              Instances For
                theorem ContinuousMap.dist_apply_le_dist {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} (x : α) :
                dist (f x) (g x) dist f g

                The pointwise distance is controlled by the distance between functions, by definition.

                theorem ContinuousMap.dist_le {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } (C0 : 0 C) :
                dist f g C ∀ (x : α), dist (f x) (g x) C

                The distance between two functions is controlled by the supremum of the pointwise distances.

                theorem ContinuousMap.dist_le_iff_of_nonempty {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } [Nonempty α] :
                dist f g C ∀ (x : α), dist (f x) (g x) C
                theorem ContinuousMap.dist_lt_iff_of_nonempty {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } [Nonempty α] :
                dist f g < C ∀ (x : α), dist (f x) (g x) < C
                theorem ContinuousMap.dist_lt_of_nonempty {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } [Nonempty α] (w : ∀ (x : α), dist (f x) (g x) < C) :
                dist f g < C
                theorem ContinuousMap.dist_lt_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } (C0 : 0 < C) :
                dist f g < C ∀ (x : α), dist (f x) (g x) < C
                theorem ContinuousMap.dist_eq_iSup {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} :
                dist f g = ⨆ (x : α), dist (f x) (g x)
                theorem ContinuousMap.nndist_eq_iSup {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} :
                nndist f g = ⨆ (x : α), nndist (f x) (g x)
                theorem ContinuousMap.edist_eq_iSup {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} :
                edist f g = ⨆ (x : α), edist (f x) (g x)
                instance ContinuousMap.instIsBoundedSMul {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {R : Type u_4} [Zero R] [Zero β] [PseudoMetricSpace R] [SMul R β] [IsBoundedSMul R β] :
                Equations
                  theorem ContinuousMap.norm_coe_le_norm {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) (x : α) :
                  theorem ContinuousMap.dist_le_two_norm {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) (x y : α) :
                  dist (f x) (f y) 2 * f

                  Distance between the images of any two points is at most twice the norm of the function.

                  theorem ContinuousMap.norm_le {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) {C : } (C0 : 0 C) :
                  f C ∀ (x : α), f x C

                  The norm of a function is controlled by the supremum of the pointwise norms.

                  theorem ContinuousMap.norm_le_of_nonempty {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) [Nonempty α] {M : } :
                  f M ∀ (x : α), f x M
                  theorem ContinuousMap.norm_lt_iff {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) {M : } (M0 : 0 < M) :
                  f < M ∀ (x : α), f x < M
                  theorem ContinuousMap.nnnorm_lt_iff {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) {M : NNReal} (M0 : 0 < M) :
                  f‖₊ < M ∀ (x : α), f x‖₊ < M
                  theorem ContinuousMap.norm_lt_iff_of_nonempty {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) [Nonempty α] {M : } :
                  f < M ∀ (x : α), f x < M
                  theorem ContinuousMap.nnnorm_lt_iff_of_nonempty {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) [Nonempty α] {M : NNReal} :
                  f‖₊ < M ∀ (x : α), f x‖₊ < M
                  theorem ContinuousMap.apply_le_norm {α : Type u_1} [TopologicalSpace α] [CompactSpace α] (f : C(α, )) (x : α) :
                  f x f
                  theorem ContinuousMap.neg_norm_le_apply {α : Type u_1} [TopologicalSpace α] [CompactSpace α] (f : C(α, )) (x : α) :
                  theorem ContinuousMap.norm_eq_iSup_norm {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) :
                  f = ⨆ (x : α), f x
                  theorem ContinuousMap.enorm_eq_iSup_enorm {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) :
                  f‖ₑ = ⨆ (x : α), f x‖ₑ
                  Equations
                    instance ContinuousMap.normedSpace {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] {𝕜 : Type u_5} [NormedField 𝕜] [NormedSpace 𝕜 E] :
                    NormedSpace 𝕜 C(α, E)
                    Equations

                      When α is compact and 𝕜 is a normed field, the 𝕜-algebra of bounded continuous maps α →ᵇ β is 𝕜-linearly isometric to C(α, β).

                      Equations
                        Instances For
                          @[simp]
                          theorem ContinuousMap.linearIsometryBoundedOfCompact_apply_apply {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] {𝕜 : Type u_4} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] (f : C(α, E)) (a : α) :
                          ((linearIsometryBoundedOfCompact α E 𝕜) f) a = f a
                          @[simp]
                          theorem ContinuousMap.nnnorm_smul_const {α : Type u_1} [TopologicalSpace α] [CompactSpace α] {R : Type u_4} {β : Type u_5} [SeminormedAddCommGroup β] [SeminormedRing R] [Module R β] [NormSMulClass R β] (f : C(α, R)) (b : β) :
                          @[simp]
                          theorem ContinuousMap.norm_smul_const {α : Type u_1} [TopologicalSpace α] [CompactSpace α] {R : Type u_4} {β : Type u_5} [SeminormedAddCommGroup β] [SeminormedRing R] [Module R β] [NormSMulClass R β] (f : C(α, R)) (b : β) :
                          instance ContinuousMap.instNormedAlgebra {α : Type u_1} [TopologicalSpace α] [CompactSpace α] {𝕜 : Type u_4} {γ : Type u_5} [NormedField 𝕜] [SeminormedRing γ] [NormedAlgebra 𝕜 γ] :
                          Equations

                            We now set up some declarations making it convenient to use uniform continuity.

                            theorem ContinuousMap.uniform_continuity {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [CompactSpace α] [PseudoMetricSpace β] (f : C(α, β)) (ε : ) (h : 0 < ε) :
                            δ > 0, ∀ {x y : α}, dist x y < δdist (f x) (f y) < ε
                            def ContinuousMap.modulus {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [CompactSpace α] [PseudoMetricSpace β] (f : C(α, β)) (ε : ) (h : 0 < ε) :

                            An arbitrarily chosen modulus of uniform continuity for a given function f and ε > 0.

                            Equations
                              Instances For
                                theorem ContinuousMap.modulus_pos {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [CompactSpace α] [PseudoMetricSpace β] (f : C(α, β)) {ε : } {h : 0 < ε} :
                                0 < f.modulus ε h
                                theorem ContinuousMap.dist_lt_of_dist_lt_modulus {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [CompactSpace α] [PseudoMetricSpace β] (f : C(α, β)) (ε : ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) :
                                dist (f a) (f b) < ε
                                @[deprecated ContinuousLinearMap.compLeftContinuous (since := "2025-05-18")]
                                def ContinuousLinearMap.compLeftContinuousCompact (R : Type u_3) {M : Type u_5} [TopologicalSpace M] {M₂ : Type u_6} [TopologicalSpace M₂] [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [ContinuousAdd M] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M₂] [Module R M₂] [ContinuousConstSMul R M₂] (α : Type u_7) [TopologicalSpace α] (g : M →L[R] M₂) :
                                C(α, M) →L[R] C(α, M₂)

                                Alias of ContinuousLinearMap.compLeftContinuous.


                                Composition on the left by a continuous linear map, as a ContinuousLinearMap. Similar to LinearMap.compLeft.

                                Equations
                                  Instances For
                                    @[deprecated ContinuousLinearMap.compLeftContinuous_apply (since := "2025-05-18")]

                                    Alias of ContinuousLinearMap.compLeftContinuous_apply.

                                    Local normal convergence #

                                    A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of C(X, E) (i.e. locally uniform convergence).

                                    theorem ContinuousMap.summable_of_locally_summable_norm {X : Type u_1} [TopologicalSpace X] [LocallyCompactSpace X] {E : Type u_2} [NormedAddCommGroup E] [CompleteSpace E] {ι : Type u_3} {F : ιC(X, E)} (hF : ∀ (K : TopologicalSpace.Compacts X), Summable fun (i : ι) => restrict (↑K) (F i)) :

                                    Star structures #

                                    In this section, if β is a normed ⋆-group, then so is the space of continuous functions from α to β, by using the star operation pointwise.

                                    Furthermore, if α is compact and β is a C⋆-ring, then C(α, β) is a C⋆-ring.