Documentation

Mathlib.Topology.Instances.TrivSqZeroExt

Topology on TrivSqZeroExt R M #

The type TrivSqZeroExt R M inherits the topology from R × M.

Note that this is not the topology induced by the seminorm on the dual numbers suggested by this Math.SE answer, which instead induces the topology pulled back through the projection map TrivSqZeroExt.fst : tsze R M → R. Obviously, that topology is not Hausdorff and using it would result in exp converging to more than one value.

Main results #

theorem TrivSqZeroExt.nhds_inl {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero M] (x : R) :
theorem TrivSqZeroExt.nhds_inr {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero R] (m : M) :

TrivSqZeroExt.fst as a continuous linear map.

Equations
    Instances For
      @[simp]
      theorem TrivSqZeroExt.fstCLM_apply (R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] (x : TrivSqZeroExt R M) :
      (fstCLM R M) x = x.fst

      TrivSqZeroExt.snd as a continuous linear map.

      Equations
        Instances For
          @[simp]
          theorem TrivSqZeroExt.sndCLM_apply (R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] (x : TrivSqZeroExt R M) :
          (sndCLM R M) x = x.snd

          TrivSqZeroExt.inl as a continuous linear map.

          Equations
            Instances For
              @[simp]
              theorem TrivSqZeroExt.inlCLM_apply (R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] (r : R) :
              (inlCLM R M) r = inl r

              TrivSqZeroExt.inr as a continuous linear map.

              Equations
                Instances For
                  @[simp]
                  theorem TrivSqZeroExt.inrCLM_apply (R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] (m : M) :
                  (inrCLM R M) m = inr m

                  This is not an instance due to complaints by the fails_quickly linter. At any rate, we only really care about the IsTopologicalRing instance below.

                  theorem TrivSqZeroExt.hasSum_inl {α : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : αR} {a : R} (h : HasSum f a) :
                  HasSum (fun (x : α) => inl (f x)) (inl a)
                  theorem TrivSqZeroExt.hasSum_inr {α : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : αM} {a : M} (h : HasSum f a) :
                  HasSum (fun (x : α) => inr (f x)) (inr a)
                  theorem TrivSqZeroExt.hasSum_fst {α : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : αTrivSqZeroExt R M} {a : TrivSqZeroExt R M} (h : HasSum f a) :
                  HasSum (fun (x : α) => (f x).fst) a.fst
                  theorem TrivSqZeroExt.hasSum_snd {α : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : αTrivSqZeroExt R M} {a : TrivSqZeroExt R M} (h : HasSum f a) :
                  HasSum (fun (x : α) => (f x).snd) a.snd