Documentation

Qq.Match

~q() matching #

This file extends the syntax of match and let to permit matching terms of type Q(α) using ~q(<pattern>), just as terms of type Syntax can be matched with `(<pattern>). Compare to the builtin match_expr and let_expr, ~q() matching:

See Qq.matcher for a brief syntax summary.

Matching typeclass instances #

For a more complete example, consider

def isCanonicalAdd {u : Level} {α : Q(Type u)} (inst : Q(Add $α)) (x : Q($α)) :
    MetaM <| Option (Q($α) × Q($α)) := do
  match x with
  | ~q($a + $b) => return some (a, b)
  | _ => return none

Here, the ~q($a + $b) match is specifically matching the addition against the provided inst instance, as this is what is being used to elaborate the +.

If the intent is to match an arbitrary Add α instance in x, then you must match this with a $inst antiquotation:

def isAdd {u : Level} {α : Q(Type u)} (x : Q($α)) :
    MetaM <| Option (Q(Add $α) × Q($α) × Q($α)) := do
  match x with
  | ~q(@HAdd.hAdd _ _ _ (@instHAdd _ $inst) $a $b) => return some (inst, a, b)
  | _ => return none

Matching Exprs #

By itself, ~q() can only match against terms of the form Q($α). To match an Expr, it must first be converted to Qq with Qq.inferTypeQ.

For instance, to match an arbitrary expression for n + 37 where n : Nat, we can write

def isAdd37 (e : Expr) : MetaM (Option Q(Nat)) := do
  let ⟨1, ~q(Nat), ~q($n + 37)⟩ ← inferTypeQ e | return none
  return some n

This is performing three sequential matches: first that e is in Sort 1, then that the type of e is Nat, then finally that e is of the right form. This syntax can be used in match too.

Instances For
    Equations
      Instances For
        def Qq.Impl.PatVarDecl.fvar (decl : PatVarDecl) :
        have a := decl.fvarTy; Q(«$a»)
        Equations
          Instances For
            Equations
              Instances For
                def Qq.Impl.mkIsDefEqResult (val : Bool) (decls : List PatVarDecl) :
                have a := mkIsDefEqType decls; Q(«$a»)
                Equations
                  Instances For
                    def Qq.Impl.mkIsDefEqResultVal (decls : List PatVarDecl) :
                    (have a := mkIsDefEqType decls; Q(«$a»))Q(Bool)
                    Equations
                      Instances For
                        Equations
                          Instances For
                            def Qq.Impl.mkLet' (n : Lean.Name) (fvar ty val body : Lean.Expr) :
                            Equations
                              Instances For
                                def Qq.Impl.mkInstantiateMVars (decls a✝ : List PatVarDecl) :
                                Lean.MetaM (have a := mkIsDefEqType decls; Q(Lean.MetaM «$a»))
                                Equations
                                  Instances For
                                    def Qq.Impl.mkIsDefEqCore (decls : List PatVarDecl) (pat discr : Q(Lean.Expr)) :
                                    List PatVarDeclLean.MetaM (have a := mkIsDefEqType decls; Q(Lean.MetaM «$a»))
                                    Equations
                                      Instances For
                                        def Qq.Impl.mkIsDefEq (decls : List PatVarDecl) (pat discr : Q(Lean.Expr)) :
                                        Lean.MetaM (have a := mkIsDefEqType decls; Q(Lean.MetaM «$a»))
                                        Equations
                                          Instances For
                                            def Qq.Impl.mkQqLets {γ : Q(Type)} (decls : List PatVarDecl) :
                                            (have a := mkIsDefEqType decls; Q(«$a»))Lean.Elab.TermElabM Q(«$γ»)Lean.Elab.TermElabM Q(«$γ»)
                                            Equations
                                              Instances For
                                                def Qq.Impl.makeMatchCode {v : Lean.Level} {γ : Q(Type)} {m : Q(TypeType v)} (_instLift : Q(MonadLiftT Lean.MetaM «$m»)) (_instBind : Q(Bind «$m»)) (decls : List PatVarDecl) (uTy : Q(Lean.Level)) (ty : Q(Q(Sort «$uTy»))) (pat discr : Q(Q(«$$ty»))) (alt : Q(«$m» «$γ»)) (expectedType : Lean.Expr) (k : Lean.ExprLean.Elab.TermElabM Q(«$m» «$γ»)) :
                                                Lean.Elab.TermElabM Q(«$m» «$γ»)
                                                Equations
                                                  Instances For
                                                    Instances For
                                                      Equations
                                                        Instances For
                                                          def Qq.Impl.mkLetDoSeqItem {m : TypeType} [Monad m] [Lean.MonadQuotation m] (pat : Lean.Term) (rhs : Lean.TSyntax `term) (alt : Lean.TSyntax `Lean.Parser.Term.doSeq) :
                                                          m (List (Lean.TSyntax `Lean.Parser.Term.doSeqItem))
                                                          Equations
                                                            Instances For

                                                              Qqs expression matching in MetaM, up to reducible defeq.

                                                              This syntax is valid in match, let, and if let, but not fun.

                                                              The usage is very similar to the builtin Syntax-matching that uses `(<pattern>) notation. As an example, consider matching against a n : Q(ℕ), which can be written

                                                              • With a match expression,
                                                                match n with
                                                                | ~q(Nat.gcd $x $y) => handleGcd x y
                                                                | ~q($x + $y) => handleAdd x y
                                                                | _ => throwError "no match"
                                                                
                                                              • With a let expression (if there is a single match)
                                                                let ~q(Nat.gcd $x $y) := n | throwError "no match"
                                                                handleGcd x y
                                                                
                                                              • With an if let statement
                                                                if let ~q(Nat.gcd $x $y) := n then
                                                                  handleGcd x y
                                                                else if let ~q($x + $y) := n then
                                                                  handleAdd x y
                                                                else
                                                                  throwError "no match"
                                                                

                                                              In addition to the obvious x and y captures, in the example above ~q also inserts into the context a term of type $n =Q Nat.gcd $x $y.

                                                              Equations
                                                                Instances For
                                                                  partial def Qq.Impl.floatQMatch (alt : Lean.TSyntax `Lean.Parser.Term.doSeq) :
                                                                  Lean.TermStateT (List (Lean.TSyntax `Lean.Parser.Term.doSeqItem)) Lean.MacroM Lean.Term