Documentation

ArkLib.ProofSystem.Binius.BinaryBasefold.General

Full Binary Basefold Protocol #

Sequential composition of:

  1. Core Interaction Phase (ℓ rounds of sumcheck + folding, and a final sumcheck)
  2. Query Phase (final non-interactive proximity testing)

References #

@[reducible]
noncomputable def Binius.BinaryBasefold.FullBinaryBasefold.fullOracleVerifier {r : } [NeZero r] {L : Type} [Field L] [Fintype L] [DecidableEq L] (𝔽q : Type) [Field 𝔽q] [Fintype 𝔽q] [DecidableEq 𝔽q] [h_Fq_char_prime : Fact (Nat.Prime (ringChar 𝔽q))] [Algebra 𝔽q L] (β : Fin rL) [hβ_lin_indep : Fact (LinearIndependent 𝔽q β)] [h_β₀_eq_1 : Fact (β 0 = 1)] {𝓡 ϑ : } (γ_repetitions : ) [NeZero ] [NeZero 𝓡] [NeZero ϑ] {h_ℓ_add_R_rate : + 𝓡 < r} [hdiv : Fact (ϑ )] :
OracleVerifier []ₒ (Statement (SumcheckBaseContext L ) 0) (OracleStatement 𝔽q β ϑ 0) Bool (fun (x : Empty) => Unit) (fullPSpec 𝔽q β γ_repetitions)

The oracle verifier for the full Binary Basefold protocol

Equations
    Instances For
      @[reducible]
      noncomputable def Binius.BinaryBasefold.FullBinaryBasefold.fullOracleReduction {r : } [NeZero r] {L : Type} [Field L] [Fintype L] [DecidableEq L] (𝔽q : Type) [Field 𝔽q] [Fintype 𝔽q] [DecidableEq 𝔽q] [h_Fq_char_prime : Fact (Nat.Prime (ringChar 𝔽q))] [Algebra 𝔽q L] (β : Fin rL) [hβ_lin_indep : Fact (LinearIndependent 𝔽q β)] [h_β₀_eq_1 : Fact (β 0 = 1)] {𝓡 ϑ : } (γ_repetitions : ) [NeZero ] [NeZero 𝓡] [NeZero ϑ] {h_ℓ_add_R_rate : + 𝓡 < r} {𝓑 : Fin 2 L} [hdiv : Fact (ϑ )] :
      OracleReduction []ₒ (Statement (SumcheckBaseContext L ) 0) (OracleStatement 𝔽q β ϑ 0) (Witness 𝔽q β 0) Bool (fun (x : Empty) => Unit) Unit (fullPSpec 𝔽q β γ_repetitions)

      The reduction for the full Binary Basefold protocol

      Equations
        Instances For
          @[reducible]
          noncomputable def Binius.BinaryBasefold.FullBinaryBasefold.fullOracleProof {r : } [NeZero r] {L : Type} [Field L] [Fintype L] [DecidableEq L] (𝔽q : Type) [Field 𝔽q] [Fintype 𝔽q] [DecidableEq 𝔽q] [h_Fq_char_prime : Fact (Nat.Prime (ringChar 𝔽q))] [Algebra 𝔽q L] (β : Fin rL) [hβ_lin_indep : Fact (LinearIndependent 𝔽q β)] [h_β₀_eq_1 : Fact (β 0 = 1)] {𝓡 ϑ : } (γ_repetitions : ) [NeZero ] [NeZero 𝓡] [NeZero ϑ] {h_ℓ_add_R_rate : + 𝓡 < r} {𝓑 : Fin 2 L} [hdiv : Fact (ϑ )] :
          OracleProof []ₒ (Statement (SumcheckBaseContext L ) 0) (OracleStatement 𝔽q β ϑ 0) (Witness 𝔽q β 0) (fullPSpec 𝔽q β γ_repetitions)

          The full Binary Basefold protocol as a Proof

          Equations
            Instances For

              Security Properties #

              theorem Binius.BinaryBasefold.FullBinaryBasefold.fullOracleReduction_perfectCompleteness {r : } [NeZero r] {L : Type} [Field L] [Fintype L] [DecidableEq L] [CharP L 2] [OracleComp.SelectableType L] (𝔽q : Type) [Field 𝔽q] [Fintype 𝔽q] [DecidableEq 𝔽q] [h_Fq_char_prime : Fact (Nat.Prime (ringChar 𝔽q))] [hF₂ : Fact (Fintype.card 𝔽q = 2)] [Algebra 𝔽q L] (β : Fin rL) [hβ_lin_indep : Fact (LinearIndependent 𝔽q β)] [h_β₀_eq_1 : Fact (β 0 = 1)] {𝓡 ϑ : } (γ_repetitions : ) [NeZero ] [NeZero 𝓡] [NeZero ϑ] {h_ℓ_add_R_rate : + 𝓡 < r} {𝓑 : Fin 2 L} [hdiv : Fact (ϑ )] {σ : Type} {init : ProbComp σ} {impl : QueryImpl []ₒ (StateT σ ProbComp)} (hInit : OracleComp.neverFails init) :

              Perfect completeness for the full Binary Basefold protocol (reduction)

              noncomputable def Binius.BinaryBasefold.FullBinaryBasefold.fullRbrKnowledgeError {r : } [NeZero r] {L : Type} [Field L] [Fintype L] [DecidableEq L] (𝔽q : Type) [Field 𝔽q] [Fintype 𝔽q] [h_Fq_char_prime : Fact (Nat.Prime (ringChar 𝔽q))] [Algebra 𝔽q L] (β : Fin rL) [hβ_lin_indep : Fact (LinearIndependent 𝔽q β)] {𝓡 ϑ : } (γ_repetitions : ) [NeZero ] [NeZero ϑ] {h_ℓ_add_R_rate : + 𝓡 < r} [hdiv : Fact (ϑ )] (i : (fullPSpec 𝔽q β γ_repetitions).ChallengeIdx) :

              Combined RBR knowledge soundness error for the full protocol

              Equations
                Instances For
                  theorem Binius.BinaryBasefold.FullBinaryBasefold.fullOracleVerifier_rbrKnowledgeSoundness {r : } [NeZero r] {L : Type} [Field L] [Fintype L] [DecidableEq L] [CharP L 2] [OracleComp.SelectableType L] (𝔽q : Type) [Field 𝔽q] [Fintype 𝔽q] [DecidableEq 𝔽q] [h_Fq_char_prime : Fact (Nat.Prime (ringChar 𝔽q))] [hF₂ : Fact (Fintype.card 𝔽q = 2)] [Algebra 𝔽q L] (β : Fin rL) [hβ_lin_indep : Fact (LinearIndependent 𝔽q β)] [h_β₀_eq_1 : Fact (β 0 = 1)] {𝓡 ϑ : } (γ_repetitions : ) [NeZero ] [NeZero 𝓡] [NeZero ϑ] {h_ℓ_add_R_rate : + 𝓡 < r} {𝓑 : Fin 2 L} [hdiv : Fact (ϑ )] {σ : Type} {init : ProbComp σ} {impl : QueryImpl []ₒ (StateT σ ProbComp)} :
                  OracleVerifier.rbrKnowledgeSoundness init impl (roundRelation 𝔽q β 0) acceptRejectOracleRel (fullOracleVerifier 𝔽q β γ_repetitions) (fullRbrKnowledgeError 𝔽q β γ_repetitions)

                  Round-by-round knowledge soundness for the full Binary Basefold oracle verifier