Finiteness and infiniteness of the DFinsupp type #
Main results #
DFinsupp.fintype: if the domain and codomain are finite, thenDFinsuppis finiteDFinsupp.infinite_of_left: if the domain is infinite, thenDFinsuppis infiniteDFinsupp.infinite_of_exists_right: if one fiber of the codomain is infinite, thenDFinsuppis infinite
instance
DFinsupp.infinite_of_left
{ι : Type u_1}
{π : ι → Type u_2}
[∀ (i : ι), Nontrivial (π i)]
[(i : ι) → Zero (π i)]
[Infinite ι]
:
theorem
DFinsupp.infinite_of_exists_right
{ι : Type u_1}
{π : ι → Type u_2}
(i : ι)
[Infinite (π i)]
[(i : ι) → Zero (π i)]
:
See DFinsupp.infinite_of_right for this in instance form, with the drawback that
it needs all π i to be infinite.