Embeddings of number fields #
This file defines the embeddings of a number field and, in particular, the embeddings into the field of complex numbers.
Main Definitions and Results #
NumberField.Embeddings.range_eval_eq_rootSet_minpoly: letx ∈ KwithKa number field and letAbe an algebraically closed field of char. 0. Then the images ofxunder the embeddings ofKinAare exactly the roots inAof the minimal polynomial ofxoverℚ.NumberField.Embeddings.pow_eq_one_of_norm_eq_one: an algebraic integer whose conjugates are all of norm one is a root of unity.
Tags #
number field, embeddings
noncomputable instance
NumberField.Embeddings.instFintypeRingHom
(K : Type u_1)
[Field K]
[NumberField K]
(A : Type u_2)
[Field A]
[CharZero A]
:
There are finitely many embeddings of a number field.
Equations
theorem
NumberField.Embeddings.card
(K : Type u_1)
[Field K]
[NumberField K]
(A : Type u_2)
[Field A]
[CharZero A]
[IsAlgClosed A]
:
The number of embeddings of a number field is equal to its finrank.
instance
NumberField.Embeddings.instNonemptyRingHom
(K : Type u_1)
[Field K]
[NumberField K]
(A : Type u_2)
[Field A]
[CharZero A]
[IsAlgClosed A]
:
theorem
NumberField.Embeddings.range_eval_eq_rootSet_minpoly
(K : Type u_1)
(A : Type u_2)
[Field K]
[NumberField K]
[Field A]
[Algebra ℚ A]
[IsAlgClosed A]
(x : K)
:
Let A be an algebraically closed field and let x ∈ K, with K a number field.
The images of x by the embeddings of K in A are exactly the roots in A of
the minimal polynomial of x over ℚ.
theorem
NumberField.Embeddings.coeff_bdd_of_norm_le
{K : Type u_1}
[Field K]
[NumberField K]
{A : Type u_2}
[NormedField A]
[IsAlgClosed A]
[NormedAlgebra ℚ A]
{B : ℝ}
{x : K}
(h : ∀ (φ : K →+* A), ‖φ x‖ ≤ B)
(i : ℕ)
:
theorem
NumberField.Embeddings.finite_of_norm_le
(K : Type u_1)
[Field K]
[NumberField K]
(A : Type u_2)
[NormedField A]
[IsAlgClosed A]
[NormedAlgebra ℚ A]
(B : ℝ)
:
Let B be a real number. The set of algebraic integers in K whose conjugates are all
smaller in norm than B is finite.
theorem
NumberField.Embeddings.pow_eq_one_of_norm_eq_one
(K : Type u_1)
[Field K]
[NumberField K]
(A : Type u_2)
[NormedField A]
[IsAlgClosed A]
[NormedAlgebra ℚ A]
{x : K}
(hxi : IsIntegral ℤ x)
(hx : ∀ (φ : K →+* A), ‖φ x‖ = 1)
:
An algebraic integer whose conjugates are all of norm one is a root of unity.
def
NumberField.place
{K : Type u_1}
[Field K]
{A : Type u_2}
[NormedDivisionRing A]
[Nontrivial A]
(φ : K →+* A)
:
An embedding into a normed division ring defines a place of K
Equations
Instances For
@[simp]
theorem
NumberField.place_apply
{K : Type u_1}
[Field K]
{A : Type u_2}
[NormedDivisionRing A]
[Nontrivial A]
(φ : K →+* A)
(x : K)
:
@[simp]
theorem
NumberField.ComplexEmbedding.lift_comp_algebraMap
(K : Type u_1)
[Field K]
{k : Type u_2}
[Field k]
[Algebra k K]
[Algebra.IsAlgebraic k K]
(φ : k →+* ℂ)
:
@[simp]
theorem
NumberField.ComplexEmbedding.lift_algebraMap_apply
(K : Type u_1)
[Field K]
{k : Type u_2}
[Field k]
[Algebra k K]
[Algebra.IsAlgebraic k K]
(φ : k →+* ℂ)
(x : k)
:
@[simp]
theorem
NumberField.ComplexEmbedding.conjugate_coe_eq
{K : Type u_1}
[Field K]
(φ : K →+* ℂ)
(x : K)
: