Documentation

Mathlib.Algebra.Category.CoalgCat.Basic

The category of coalgebras over a commutative ring #

We introduce the bundled category CoalgCat of coalgebras over a fixed commutative ring R along with the forgetful functor to ModuleCat.

This file mimics Mathlib/LinearAlgebra/QuadraticForm/QuadraticModuleCat.lean.

structure CoalgCat (R : Type u) [CommRing R] extends ModuleCat R :
Type (max u (v + 1))

The category of R-coalgebras.

Instances For
    Equations
      @[reducible, inline]
      abbrev CoalgCat.of (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :

      The object in the category of R-coalgebras associated to an R-coalgebra.

      Equations
        Instances For
          structure CoalgCat.Hom {R : Type u} [CommRing R] (V W : CoalgCat R) :

          A type alias for CoalgHom to avoid confusion between the categorical and algebraic spellings of composition.

          Instances For
            theorem CoalgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : CoalgCat R} {x y : V.Hom W} (toCoalgHom' : x.toCoalgHom' = y.toCoalgHom') :
            x = y
            theorem CoalgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {V W : CoalgCat R} {x y : V.Hom W} :
            @[reducible, inline]
            abbrev CoalgCat.Hom.toCoalgHom {R : Type u} [CommRing R] {X Y : CoalgCat R} (f : X.Hom Y) :

            Turn a morphism in CoalgCat back into a CoalgHom.

            Equations
              Instances For
                @[reducible, inline]
                abbrev CoalgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (f : X →ₗc[R] Y) :
                of R X of R Y

                Typecheck a CoalgHom as a morphism in CoalgCat R.

                Equations
                  Instances For
                    theorem CoalgCat.hom_ext {R : Type u} [CommRing R] {M N : CoalgCat R} (f g : M N) (h : Hom.toCoalgHom f = Hom.toCoalgHom g) :
                    f = g
                    theorem CoalgCat.hom_ext_iff {R : Type u} [CommRing R] {M N : CoalgCat R} {f g : M N} :
                    def CoalgEquiv.toCoalgIso {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :

                    Build an isomorphism in the category CoalgCat R from a CoalgEquiv.

                    Equations
                      Instances For
                        @[simp]
                        theorem CoalgEquiv.toCoalgIso_hom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
                        @[simp]
                        theorem CoalgEquiv.toCoalgIso_inv {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
                        @[simp]
                        theorem CoalgEquiv.toCoalgIso_symm {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
                        @[simp]
                        theorem CoalgEquiv.toCoalgIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [AddCommGroup Z] [Module R Z] [Coalgebra R X] [Coalgebra R Y] [Coalgebra R Z] (e : X ≃ₗc[R] Y) (f : Y ≃ₗc[R] Z) :

                        Build a CoalgEquiv from an isomorphism in the category CoalgCat R.

                        Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Iso.toCoalgEquiv_trans {R : Type u} [CommRing R] {X Y Z : CoalgCat R} (e : X Y) (f : Y Z) :