Documentation

Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat

The category of quadratic modules #

structure QuadraticModuleCat (R : Type u) [CommRing R] extends ModuleCat R :
Type (max u (v + 1))

The category of quadratic modules; modules with an associated quadratic form

Instances For
    @[reducible, inline]

    The object in the category of quadratic R-modules associated to a quadratic R-module.

    Equations
      Instances For
        structure QuadraticModuleCat.Hom {R : Type u} [CommRing R] (V W : QuadraticModuleCat R) :

        A type alias for QuadraticForm.LinearIsometry to avoid confusion between the categorical and algebraic spellings of composition.

        Instances For
          theorem QuadraticModuleCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {V W : QuadraticModuleCat R} {x y : V.Hom W} :
          theorem QuadraticModuleCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : QuadraticModuleCat R} {x y : V.Hom W} (toIsometry' : x.toIsometry' = y.toIsometry') :
          x = y
          @[reducible, inline]

          Turn a morphism in QuadraticModuleCat back into a Isometry.

          Equations
            Instances For
              @[reducible, inline]
              abbrev QuadraticModuleCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (f : Q₁ →qᵢ Q₂) :
              of Q₁ of Q₂

              Typecheck a QuadraticForm.Isometry as a morphism in Module R.

              Equations
                Instances For
                  theorem QuadraticModuleCat.hom_ext {R : Type u} [CommRing R] {M N : QuadraticModuleCat R} (f g : M N) (h : Hom.toIsometry f = Hom.toIsometry g) :
                  f = g
                  def QuadraticModuleCat.ofIso {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) :
                  of Q₁ of Q₂

                  Build an isomorphism in the category QuadraticModuleCat R from a QuadraticForm.IsometryEquiv.

                  Equations
                    Instances For
                      @[simp]
                      theorem QuadraticModuleCat.ofIso_inv {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) :
                      @[simp]
                      theorem QuadraticModuleCat.ofIso_hom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) :
                      @[simp]
                      theorem QuadraticModuleCat.ofIso_symm {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) :
                      @[simp]
                      theorem QuadraticModuleCat.ofIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [AddCommGroup Z] [Module R Z] {Q₁ : QuadraticForm R X} {Q₂ : QuadraticForm R Y} {Q₃ : QuadraticForm R Z} (e : QuadraticMap.IsometryEquiv Q₁ Q₂) (f : QuadraticMap.IsometryEquiv Q₂ Q₃) :

                      Build a QuadraticForm.IsometryEquiv from an isomorphism in the category QuadraticModuleCat R.

                      Equations
                        Instances For