Documentation

Mathlib.LinearAlgebra.QuadraticForm.IsometryEquiv

Isometric equivalences with respect to quadratic forms #

Main definitions #

Main results #

structure QuadraticMap.IsometryEquiv {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] (Q₁ : QuadraticMap R M₁ N) (Q₂ : QuadraticMap R M₂ N) extends M₁ ≃ₗ[R] M₂ :
Type (max u_5 u_6)

An isometric equivalence between two quadratic spaces M₁, Q₁ and M₂, Q₂ over a ring R, is a linear equivalence between M₁ and M₂ that commutes with the quadratic forms.

Instances For
    def QuadraticMap.Equivalent {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] (Q₁ : QuadraticMap R M₁ N) (Q₂ : QuadraticMap R M₂ N) :

    Two quadratic forms over a ring R are equivalent if there exists an isometric equivalence between them: a linear equivalence that transforms one quadratic form into the other.

    Equations
      Instances For
        instance QuadraticMap.IsometryEquiv.instEquivLike {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} :
        EquivLike (Q₁.IsometryEquiv Q₂) M₁ M₂
        Equations
          instance QuadraticMap.IsometryEquiv.instLinearEquivClass {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} :
          LinearEquivClass (Q₁.IsometryEquiv Q₂) R M₁ M₂
          instance QuadraticMap.IsometryEquiv.instCoeOutLinearEquivId {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} :
          CoeOut (Q₁.IsometryEquiv Q₂) (M₁ ≃ₗ[R] M₂)
          Equations
            @[simp]
            theorem QuadraticMap.IsometryEquiv.coe_toLinearEquiv {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (f : Q₁.IsometryEquiv Q₂) :
            f.toLinearEquiv = f
            @[simp]
            theorem QuadraticMap.IsometryEquiv.map_app {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (f : Q₁.IsometryEquiv Q₂) (m : M₁) :
            Q₂ (f m) = Q₁ m
            def QuadraticMap.IsometryEquiv.refl {R : Type u_2} {M : Type u_4} {N : Type u_9} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (Q : QuadraticMap R M N) :

            The identity isometric equivalence between a quadratic form and itself.

            Equations
              Instances For
                def QuadraticMap.IsometryEquiv.symm {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (f : Q₁.IsometryEquiv Q₂) :
                Q₂.IsometryEquiv Q₁

                The inverse isometric equivalence of an isometric equivalence between two quadratic forms.

                Equations
                  Instances For
                    def QuadraticMap.IsometryEquiv.trans {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {M₃ : Type u_7} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R M₃] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} {Q₃ : QuadraticMap R M₃ N} (f : Q₁.IsometryEquiv Q₂) (g : Q₂.IsometryEquiv Q₃) :
                    Q₁.IsometryEquiv Q₃

                    The composition of two isometric equivalences between quadratic forms.

                    Equations
                      Instances For
                        def QuadraticMap.IsometryEquiv.toIsometry {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (g : Q₁.IsometryEquiv Q₂) :
                        Q₁ →qᵢ Q₂

                        Isometric equivalences are isometric maps

                        Equations
                          Instances For
                            @[simp]
                            theorem QuadraticMap.IsometryEquiv.toIsometry_apply {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (g : Q₁.IsometryEquiv Q₂) (x : M₁) :
                            g.toIsometry x = g x
                            theorem QuadraticMap.Equivalent.refl {R : Type u_2} {M : Type u_4} {N : Type u_9} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (Q : QuadraticMap R M N) :
                            theorem QuadraticMap.Equivalent.symm {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} (h : Q₁.Equivalent Q₂) :
                            Q₂.Equivalent Q₁
                            theorem QuadraticMap.Equivalent.trans {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {M₃ : Type u_7} {N : Type u_9} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N] [Module R M₁] [Module R M₂] [Module R M₃] [Module R N] {Q₁ : QuadraticMap R M₁ N} {Q₂ : QuadraticMap R M₂ N} {Q₃ : QuadraticMap R M₃ N} (h : Q₁.Equivalent Q₂) (h' : Q₂.Equivalent Q₃) :
                            Q₁.Equivalent Q₃
                            def QuadraticMap.isometryEquivOfCompLinearEquiv {R : Type u_2} {M : Type u_4} {M₁ : Type u_5} {N : Type u_9} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid M₁] [AddCommMonoid N] [Module R M] [Module R M₁] [Module R N] (Q : QuadraticMap R M N) (f : M₁ ≃ₗ[R] M) :
                            Q.IsometryEquiv (Q.comp f)

                            A quadratic form composed with a LinearEquiv is isometric to itself.

                            Equations
                              Instances For
                                noncomputable def QuadraticMap.isometryEquivBasisRepr {ι : Type u_1} {R : Type u_2} {M : Type u_4} {N : Type u_9} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Finite ι] (Q : QuadraticMap R M N) (v : Module.Basis ι R M) :

                                A quadratic form is isometrically equivalent to its bases representations.

                                Equations
                                  Instances For

                                    Given an orthogonal basis, a quadratic form is isometrically equivalent with a weighted sum of squares.

                                    Equations
                                      Instances For