Documentation

Mathlib.Algebra.Homology.ExactSequence

Exact sequences #

A sequence of n composable arrows S : ComposableArrows C (i.e. a functor S : Fin (n + 1) ⥤ C) is said to be exact (S.Exact) if the composition of two consecutive arrows are zero (S.IsComplex) and the diagram is exact at each i for 1 ≤ i < n.

Together with the inductive construction of composable arrows ComposableArrows.precomp, this is useful in order to state that certain finite sequences of morphisms are exact (e.g the snake lemma), even though in the applications it would usually be more convenient to use individual lemmas expressing the exactness at a particular object.

This implementation is a refactor of exact_seq with appeared in the Liquid Tensor Experiment as a property of lists in Arrow C.

The composable arrows associated to a short complex.

Equations
    Instances For

      A map of short complexes induces a map of composable arrows with the same data.

      Equations
        Instances For

          F : ComposableArrows C n is a complex if all compositions of two consecutive arrows are zero.

          Instances For
            theorem CategoryTheory.ComposableArrows.IsComplex.zero_assoc {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S : ComposableArrows C n} (self : S.IsComplex) (i : ) (hi : i + 2 n := by omega) {Z : C} (h : S.obj i + 2, Z) :
            CategoryStruct.comp (S.map' i (i + 1) ) (CategoryStruct.comp (S.map' (i + 1) (i + 2) hi) h) = CategoryStruct.comp 0 h
            theorem CategoryTheory.ComposableArrows.IsComplex.zero' {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S : ComposableArrows C n} (hS : S.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
            CategoryStruct.comp (S.map' i j ) (S.map' j k hk) = 0
            theorem CategoryTheory.ComposableArrows.IsComplex.zero'_assoc {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S : ComposableArrows C n} (hS : S.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) {Z : C} (h : S.obj k, Z) :
            CategoryStruct.comp (S.map' i j ) (CategoryStruct.comp (S.map' j k hk) h) = CategoryStruct.comp 0 h
            theorem CategoryTheory.ComposableArrows.isComplex_of_iso {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (e : S₁ S₂) (h₁ : S₁.IsComplex) :
            @[reducible, inline]
            abbrev CategoryTheory.ComposableArrows.sc' {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } (S : ComposableArrows C n) (hS : S.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :

            The short complex consisting of maps S.map' i j and S.map' j k when we know that S : ComposableArrows C n satisfies S.IsComplex.

            Equations
              Instances For
                @[reducible, inline]
                abbrev CategoryTheory.ComposableArrows.sc {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } (S : ComposableArrows C n) (hS : S.IsComplex) (i : ) (hi : i + 2 n := by omega) :

                The short complex consisting of maps S.map' i (i + 1) and S.map' (i + 1) (i + 2) when we know that S : ComposableArrows C n satisfies S.IsComplex.

                Equations
                  Instances For

                    F : ComposableArrows C n is exact if it is a complex and that all short complexes consisting of two consecutive arrows are exact.

                    Instances For
                      theorem CategoryTheory.ComposableArrows.Exact.exact' {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S : ComposableArrows C n} (hS : S.Exact) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
                      (S.sc' i j k hij hjk hk).Exact
                      def CategoryTheory.ComposableArrows.sc'Map {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (φ : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
                      S₁.sc' h₁ i j k hij hjk hk S₂.sc' h₂ i j k hij hjk hk

                      Functoriality maps for ComposableArrows.sc'.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.ComposableArrows.sc'Map_τ₂ {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (φ : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
                          (sc'Map φ h₁ h₂ i j k hij hjk hk).τ₂ = φ.app j,
                          @[simp]
                          theorem CategoryTheory.ComposableArrows.sc'Map_τ₃ {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (φ : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
                          (sc'Map φ h₁ h₂ i j k hij hjk hk).τ₃ = φ.app k,
                          @[simp]
                          theorem CategoryTheory.ComposableArrows.sc'Map_τ₁ {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (φ : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
                          (sc'Map φ h₁ h₂ i j k hij hjk hk).τ₁ = φ.app i,
                          def CategoryTheory.ComposableArrows.scMap {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (φ : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i : ) (hi : i + 2 n := by omega) :
                          S₁.sc h₁ i hi S₂.sc h₂ i hi

                          Functoriality maps for ComposableArrows.sc.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.ComposableArrows.scMap_τ₂ {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (φ : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i : ) (hi : i + 2 n := by omega) :
                              (scMap φ h₁ h₂ i hi).τ₂ = φ.app i + 1,
                              @[simp]
                              theorem CategoryTheory.ComposableArrows.scMap_τ₃ {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (φ : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i : ) (hi : i + 2 n := by omega) :
                              (scMap φ h₁ h₂ i hi).τ₃ = φ.app i + 2,
                              @[simp]
                              theorem CategoryTheory.ComposableArrows.scMap_τ₁ {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (φ : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i : ) (hi : i + 2 n := by omega) :
                              (scMap φ h₁ h₂ i hi).τ₁ = φ.app i,
                              def CategoryTheory.ComposableArrows.sc'MapIso {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (e : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
                              S₁.sc' h₁ i j k hij hjk hk S₂.sc' h₂ i j k hij hjk hk

                              The isomorphism S₁.sc' _ i j k ≅ S₂.sc' _ i j k induced by an isomorphism S₁ ≅ S₂ in ComposableArrows C n.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.ComposableArrows.sc'MapIso_inv {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (e : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
                                  (sc'MapIso e h₁ h₂ i j k hij hjk hk).inv = sc'Map e.inv h₂ h₁ i j k hij hjk hk
                                  @[simp]
                                  theorem CategoryTheory.ComposableArrows.sc'MapIso_hom {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (e : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i j k : ) (hij : i + 1 = j := by omega) (hjk : j + 1 = k := by omega) (hk : k n := by omega) :
                                  (sc'MapIso e h₁ h₂ i j k hij hjk hk).hom = sc'Map e.hom h₁ h₂ i j k hij hjk hk
                                  def CategoryTheory.ComposableArrows.scMapIso {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (e : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i : ) (hi : i + 2 n := by omega) :
                                  S₁.sc h₁ i hi S₂.sc h₂ i hi

                                  The isomorphism S₁.sc _ i ≅ S₂.sc _ i induced by an isomorphism S₁ ≅ S₂ in ComposableArrows C n.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.ComposableArrows.scMapIso_inv {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (e : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i : ) (hi : i + 2 n := by omega) :
                                      (scMapIso e h₁ h₂ i hi).inv = scMap e.inv h₂ h₁ i hi
                                      @[simp]
                                      theorem CategoryTheory.ComposableArrows.scMapIso_hom {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (e : S₁ S₂) (h₁ : S₁.IsComplex) (h₂ : S₂.IsComplex) (i : ) (hi : i + 2 n := by omega) :
                                      (scMapIso e h₁ h₂ i hi).hom = scMap e.hom h₁ h₂ i hi
                                      theorem CategoryTheory.ComposableArrows.exact_of_iso {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S₁ S₂ : ComposableArrows C n} (e : S₁ S₂) (h₁ : S₁.Exact) :
                                      S₂.Exact
                                      theorem CategoryTheory.ComposableArrows.exact₂_mk {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] (S : ComposableArrows C 2) (w : CategoryStruct.comp (S.map' 0 1 ) (S.map' 1 2 ) = 0) (h : { X₁ := S.obj 0, , X₂ := S.obj 1, , X₃ := S.obj 2, , f := S.map' 0 1 , g := S.map' 1 2 , zero := w }.Exact) :
                                      theorem CategoryTheory.ComposableArrows.exact_of_δ₀ {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } {S : ComposableArrows C (n + 2)} (h : (mk₂ (S.map' 0 1 ) (S.map' 1 2 )).Exact) (h₀ : S.δ₀.Exact) :

                                      If S : ComposableArrows C (n + 2) is such that the first two arrows form an exact sequence and that the tail S.δ₀ is exact, then S is also exact. See ShortComplex.SnakeInput.snake_lemma in Algebra.Homology.ShortComplex.SnakeLemma for a use of this lemma.

                                      theorem CategoryTheory.ComposableArrows.exact_iff_δlast {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } (S : ComposableArrows C (n + 2)) :
                                      S.Exact S.δlast.Exact (mk₂ (S.map' n (n + 1) ) (S.map' (n + 1) (n + 2) )).Exact
                                      theorem CategoryTheory.ComposableArrows.exact_of_δlast {C : Type u_1} [Category.{u_2, u_1} C] [Limits.HasZeroMorphisms C] {n : } (S : ComposableArrows C (n + 2)) (h₁ : S.δlast.Exact) (h₂ : (mk₂ (S.map' n (n + 1) ) (S.map' (n + 1) (n + 2) )).Exact) :
                                      theorem CategoryTheory.ComposableArrows.Exact.isIso_map' {C : Type u_2} [Category.{u_3, u_2} C] [Preadditive C] [Balanced C] {n : } {S : ComposableArrows C n} (hS : S.Exact) (k : ) (hk : k + 3 n) (h₀ : S.map' k (k + 1) = 0) (h₁ : S.map' (k + 2) (k + 3) hk = 0) :
                                      IsIso (S.map' (k + 1) (k + 2) )