Documentation

Mathlib.CategoryTheory.Limits.Shapes.ZeroMorphisms

Zero morphisms and zero objects #

A category "has zero morphisms" if there is a designated "zero morphism" in each morphism space, and compositions of zero morphisms with anything give the zero morphism. (Notice this is extra structure, not merely a property.)

A category "has a zero object" if it has an object which is both initial and terminal. Having a zero object provides zero morphisms, as the unique morphisms factoring through the zero object.

References #

A category "has zero morphisms" if there is a designated "zero morphism" in each morphism space, and compositions of zero morphisms with anything give the zero morphism.

Instances
    @[simp]
    theorem CategoryTheory.Limits.comp_zero {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {Z : C} :
    @[simp]

    If you're tempted to use this lemma "in the wild", you should probably carefully consider whether you've made a mistake in allowing two instances of HasZeroMorphisms to exist at all.

    See, particularly, the note on zeroMorphismsOfZeroObject below.

    theorem CategoryTheory.Limits.zero_of_comp_mono {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z : C} {f : X Y} (g : Y Z) [Mono g] (h : CategoryStruct.comp f g = 0) :
    f = 0
    theorem CategoryTheory.Limits.zero_of_epi_comp {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z : C} (f : X Y) {g : Y Z} [Epi f] (h : CategoryStruct.comp f g = 0) :
    g = 0
    @[simp]
    theorem CategoryTheory.Limits.zero_app {C : Type u} [Category.{v, u} C] (D : Type u') [Category.{v', u'} D] [HasZeroMorphisms D] (F G : Functor C D) (j : C) :
    theorem CategoryTheory.Limits.IsZero.eq_zero_of_src {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (o : IsZero X) (f : X Y) :
    f = 0
    theorem CategoryTheory.Limits.IsZero.eq_zero_of_tgt {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (o : IsZero Y) (f : X Y) :
    f = 0
    theorem CategoryTheory.Limits.IsZero.of_mono_eq_zero {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [Mono f] (h : f = 0) :
    theorem CategoryTheory.Limits.IsZero.of_epi_eq_zero {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [Epi f] (h : f = 0) :
    theorem CategoryTheory.Limits.IsZero.of_mono {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [Mono f] (i : IsZero Y) :
    theorem CategoryTheory.Limits.IsZero.of_epi {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [Epi f] (i : IsZero X) :

    A category with a zero object has zero morphisms.

    It is rarely a good idea to use this. Many categories that have a zero object have zero morphisms for some other reason, for example from additivity. Library code that uses zeroMorphismsOfZeroObject will then be incompatible with these categories because the HasZeroMorphisms instances will not be definitionally equal. For this reason library code should generally ask for an instance of HasZeroMorphisms separately, even if it already asks for an instance of HasZeroObjects.

    Equations
      Instances For

        A category with a zero object has zero morphisms.

        It is rarely a good idea to use this. Many categories that have a zero object have zero morphisms for some other reason, for example from additivity. Library code that uses zeroMorphismsOfZeroObject will then be incompatible with these categories because the has_zero_morphisms instances will not be definitionally equal. For this reason library code should generally ask for an instance of HasZeroMorphisms separately, even if it already asks for an instance of HasZeroObjects.

        Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Limits.IsZero.map {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] [HasZeroObject D] [HasZeroMorphisms D] {F : Functor C D} (hF : IsZero F) {X Y : C} (f : X Y) :
            F.map f = 0
            @[simp]

            An arrow ending in the zero object is zero

            An arrow starting at the zero object is zero

            An object X has 𝟙 X = 0 if and only if it is isomorphic to the zero object.

            Because X ≅ 0 contains data (even if a subsingleton), we express this as an .

            Equations
              Instances For

                If 0 : X ⟶ Y is a monomorphism, then X ≅ 0.

                Equations
                  Instances For

                    If 0 : X ⟶ Y is an epimorphism, then Y ≅ 0.

                    Equations
                      Instances For
                        def CategoryTheory.Limits.isoZeroOfMonoEqZero {C : Type u} [Category.{v, u} C] [HasZeroObject C] [HasZeroMorphisms C] {X Y : C} {f : X Y} [Mono f] (h : f = 0) :
                        X 0

                        If a monomorphism out of X is zero, then X ≅ 0.

                        Equations
                          Instances For
                            def CategoryTheory.Limits.isoZeroOfEpiEqZero {C : Type u} [Category.{v, u} C] [HasZeroObject C] [HasZeroMorphisms C] {X Y : C} {f : X Y} [Epi f] (h : f = 0) :
                            Y 0

                            If an epimorphism in to Y is zero, then Y ≅ 0.

                            Equations
                              Instances For

                                If an object X is isomorphic to 0, there's no need to use choice to construct an explicit isomorphism: the zero morphism suffices.

                                Equations
                                  Instances For

                                    A zero morphism 0 : X ⟶ Y is an isomorphism if and only if the identities on both X and Y are zero.

                                    Equations
                                      Instances For

                                        A zero morphism 0 : X ⟶ X is an isomorphism if and only if the identity on X is zero.

                                        Equations
                                          Instances For

                                            A zero morphism 0 : X ⟶ Y is an isomorphism if and only if X and Y are isomorphic to the zero object.

                                            Equations
                                              Instances For

                                                A zero morphism 0 : X ⟶ X is an isomorphism if and only if X is isomorphic to the zero object.

                                                Equations
                                                  Instances For

                                                    If there are zero morphisms, any initial object is a zero object.

                                                    If there are zero morphisms, any terminal object is a zero object.

                                                    The zero morphism has a MonoFactorisation through the zero object.

                                                    Equations
                                                      Instances For

                                                        The factorisation through the zero object is an image factorisation.

                                                        Equations
                                                          Instances For

                                                            The image of a zero morphism is the zero object.

                                                            Equations
                                                              Instances For
                                                                def CategoryTheory.Limits.imageZero' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] [HasZeroObject C] {X Y : C} {f : X Y} (h : f = 0) [HasImage f] :

                                                                The image of a morphism which is equal to zero is the zero object.

                                                                Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem CategoryTheory.Limits.image.ι_zero' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] [HasZeroObject C] [HasEqualizers C] {X Y : C} {f : X Y} (h : f = 0) [HasImage f] :
                                                                    ι f = 0

                                                                    If we know f = 0, it requires a little work to conclude image.ι f = 0, because f = g only implies image f ≅ image g.

                                                                    In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms.

                                                                    instance CategoryTheory.Limits.isSplitEpi_pi_π {C : Type u} [Category.{v, u} C] {β : Type u'} [HasZeroMorphisms C] (f : βC) [HasLimit (Discrete.functor f)] (b : β) :

                                                                    In the presence of zero morphisms, projections into a product are (split) epimorphisms.

                                                                    In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms.

                                                                    In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms.

                                                                    In the presence of zero morphisms, projections into a product are (split) epimorphisms.

                                                                    In the presence of zero morphisms, projections into a product are (split) epimorphisms.

                                                                    If a functor F is zero, then any cone for F with a zero point is limit.

                                                                    Equations
                                                                      Instances For

                                                                        If a functor F is zero, then any cocone for F with a zero point is colimit.

                                                                        Equations
                                                                          Instances For
                                                                            def CategoryTheory.Limits.Pi.ι {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasProduct f] (b : β) :
                                                                            f b ∏ᶜ f

                                                                            In the presence of 0-morphism we can define an inclusion morphism into any product.

                                                                            Equations
                                                                              Instances For
                                                                                @[simp]
                                                                                theorem CategoryTheory.Limits.Pi.ι_π_eq_id {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasProduct f] (b : β) :
                                                                                @[simp]
                                                                                theorem CategoryTheory.Limits.Pi.ι_π_eq_id_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasProduct f] (b : β) {Z : C} (h : f b Z) :
                                                                                theorem CategoryTheory.Limits.Pi.ι_π_of_ne {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasProduct f] {b c : β} (h : b c) :
                                                                                CategoryStruct.comp (ι f b) (π f c) = 0
                                                                                theorem CategoryTheory.Limits.Pi.ι_π_of_ne_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasProduct f] {b c : β} (h : b c) {Z : C} (h✝ : f c Z) :
                                                                                theorem CategoryTheory.Limits.Pi.ι_π {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasProduct f] (b c : β) :
                                                                                CategoryStruct.comp (ι f b) (π f c) = if h : b = c then eqToHom else 0
                                                                                theorem CategoryTheory.Limits.Pi.ι_π_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasProduct f] (b c : β) {Z : C} (h : f c Z) :
                                                                                CategoryStruct.comp (ι f b) (CategoryStruct.comp (π f c) h) = CategoryStruct.comp (if h : b = c then eqToHom else 0) h
                                                                                instance CategoryTheory.Limits.instMonoι_1 {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasProduct f] (b : β) :
                                                                                Mono (Pi.ι f b)
                                                                                def CategoryTheory.Limits.Sigma.π {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasCoproduct f] (b : β) :
                                                                                f f b

                                                                                In the presence of 0-morphisms we can define a projection morphism from any coproduct.

                                                                                Equations
                                                                                  Instances For
                                                                                    @[simp]
                                                                                    theorem CategoryTheory.Limits.Sigma.ι_π_eq_id {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasCoproduct f] (b : β) :
                                                                                    @[simp]
                                                                                    theorem CategoryTheory.Limits.Sigma.ι_π_eq_id_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasCoproduct f] (b : β) {Z : C} (h : f b Z) :
                                                                                    theorem CategoryTheory.Limits.Sigma.ι_π_of_ne {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasCoproduct f] {b c : β} (h : b c) :
                                                                                    CategoryStruct.comp (ι f b) (π f c) = 0
                                                                                    theorem CategoryTheory.Limits.Sigma.ι_π_of_ne_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasCoproduct f] {b c : β} (h : b c) {Z : C} (h✝ : f c Z) :
                                                                                    theorem CategoryTheory.Limits.Sigma.ι_π {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasCoproduct f] (b c : β) :
                                                                                    CategoryStruct.comp (ι f b) (π f c) = if h : b = c then eqToHom else 0
                                                                                    theorem CategoryTheory.Limits.Sigma.ι_π_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasCoproduct f] (b c : β) {Z : C} (h : f c Z) :
                                                                                    CategoryStruct.comp (ι f b) (CategoryStruct.comp (π f c) h) = CategoryStruct.comp (if h : b = c then eqToHom else 0) h
                                                                                    instance CategoryTheory.Limits.instEpiπ {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {β : Type w} [DecidableEq β] (f : βC) [HasCoproduct f] (b : β) :

                                                                                    If a category C has 0-morphisms, there is a canonical inclusion from the first component X into any product of objects X ⨯ Y.

                                                                                    Equations
                                                                                      Instances For

                                                                                        If a category C has 0-morphisms, there is a canonical inclusion from the second component Y into any product of objects X ⨯ Y.

                                                                                        Equations
                                                                                          Instances For

                                                                                            If a category C has 0-morphisms, there is a canonical projection from a coproduct X ⨿ Y to its first component X.

                                                                                            Equations
                                                                                              Instances For

                                                                                                If a category C has 0-morphisms, there is a canonical projection from a coproduct X ⨿ Y to its second component Y.

                                                                                                Equations
                                                                                                  Instances For