Documentation

Mathlib.Algebra.Homology.Localization

The category of homological complexes up to quasi-isomorphisms

Given a category C with homology and any complex shape c, we define the category HomologicalComplexUpToQuasiIso C c which is the localized category of HomologicalComplex C c with respect to quasi-isomorphisms. When C is abelian, this will be the derived category of C in the particular case of the complex shape ComplexShape.up.

Under suitable assumptions on c (e.g. chain complexes, or cochain complexes indexed by ), we shall show that HomologicalComplexUpToQuasiIso C c is also the localized category of HomotopyCategory C c with respect to the class of quasi-isomorphisms.

@[reducible, inline]

The category of homological complexes up to quasi-isomorphisms.

Equations
    Instances For

      The class of quasi-isomorphisms in the homotopy category.

      Equations
        Instances For

          The condition on a complex shape c saying that homotopic maps become equal in the localized category with respect to quasi-isomorphisms.

          Instances

            The category HomologicalComplexUpToQuasiIso C c which was defined as a localization of HomologicalComplex C c with respect to quasi-isomorphisms also identify to a localization of the homotopy category with respect ot quasi-isomorphisms.

            The homotopy category satisfies the universal property of the localized category with respect to homotopy equivalences.

            Equations
              Instances For

                The localizer morphism which expresses that F.mapHomologicalComplex c preserves quasi-isomorphisms.

                Equations
                  Instances For