Documentation

Mathlib.Algebra.Lie.Matrix

Lie algebras of matrices #

An important class of Lie algebras are those arising from the associative algebra structure on square matrices over a commutative ring. This file provides some very basic definitions whose primary value stems from their utility when constructing the classical Lie algebras using matrices.

Main definitions #

Tags #

lie algebra, matrix

def lieEquivMatrix' {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] :
Module.End R (nR) ≃ₗ⁅R Matrix n n R

The natural equivalence between linear endomorphisms of finite free modules and square matrices is compatible with the Lie algebra structures.

Equations
    Instances For
      @[simp]
      theorem lieEquivMatrix'_apply {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] (f : Module.End R (nR)) :
      @[simp]
      def Matrix.lieConj {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] (P : Matrix n n R) (h : Invertible P) :

      An invertible matrix induces a Lie algebra equivalence from the space of matrices to itself.

      Equations
        Instances For
          @[simp]
          theorem Matrix.lieConj_apply {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] (P A : Matrix n n R) (h : Invertible P) :
          (P.lieConj h) A = P * A * P⁻¹
          @[simp]
          theorem Matrix.lieConj_symm_apply {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] (P A : Matrix n n R) (h : Invertible P) :
          (P.lieConj h).symm A = P⁻¹ * A * P
          def Matrix.reindexLieEquiv {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] {m : Type w₁} [DecidableEq m] [Fintype m] (e : n m) :

          For square matrices, the natural map that reindexes a matrix's rows and columns with equivalent types, Matrix.reindex, is an equivalence of Lie algebras.

          Equations
            Instances For
              @[simp]
              theorem Matrix.reindexLieEquiv_apply {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] {m : Type w₁} [DecidableEq m] [Fintype m] (e : n m) (M : Matrix n n R) :
              (reindexLieEquiv e) M = (reindex e e) M
              @[simp]
              theorem Matrix.reindexLieEquiv_symm {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] {m : Type w₁} [DecidableEq m] [Fintype m] (e : n m) :
              instance Matrix.instLieRingModuleForall {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] :
              LieRingModule (Matrix n n R) (nR)
              Equations
                instance Matrix.instLieModuleForall {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] :
                LieModule R (Matrix n n R) (nR)
                @[simp]
                theorem Matrix.lie_apply {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] (A : Matrix n n R) (v : nR) :
                @[simp]
                theorem LieModule.toEnd_matrix {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] :
                instance LieModule.instIsFaithfulMatrixForall {R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] :
                IsFaithful R (Matrix n n R) (nR)