Documentation

Mathlib.Algebra.Module.LocalizedModule.Submodule

Localization of Submodules #

Results about localizations of submodules and quotient modules are provided in this file.

Main results #

TODO #

def Submodule.localized₀ {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

Let N be a localization of an R-module M at p. This is the localization of an R-submodule of M viewed as an R-submodule of N.

Equations
    Instances For
      def Submodule.localized' {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

      Let S be the localization of R at p and N be a localization of M at p. This is the localization of an R-submodule of M viewed as an S-submodule of N.

      Equations
        Instances For
          theorem Submodule.mem_localized₀ {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : N) :
          x localized₀ p f M' mM', ∃ (s : p), IsLocalizedModule.mk' f m s = x
          theorem Submodule.mem_localized' {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : N) :
          x localized' S p f M' mM', ∃ (s : p), IsLocalizedModule.mk' f m s = x
          theorem Submodule.restrictScalars_localized' {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

          localized₀ is the same as localized' considered as a submodule over the base ring.

          theorem Submodule.localized'_eq_span {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
          localized' S p f M' = span S (f '' M')
          def Submodule.localized'gi {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :
          GaloisInsertion (localized' S p f) fun (x : Submodule S N) => comap f (restrictScalars R x)

          The Galois insertion between Submodule R M and Submodule S N, where S is the localization of R at p and N is the localization of M at p.

          Equations
            Instances For
              @[reducible, inline]
              noncomputable abbrev Submodule.localized {R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

              The localization of an R-submodule of M at p viewed as an Rₚ-submodule of Mₚ.

              Equations
                Instances For
                  @[simp]
                  theorem Submodule.localized₀_bot {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] :
                  @[simp]
                  theorem Submodule.localized'_bot {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :
                  @[simp]
                  theorem Submodule.localized₀_top {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] :
                  @[simp]
                  theorem Submodule.localized'_top {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :
                  @[simp]
                  theorem Submodule.localized'_span {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (s : Set M) :
                  localized' S p f (span R s) = span S (f '' s)
                  theorem Submodule.localized₀_smul {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (I : Submodule R R) :
                  localized₀ p f (I M') = I localized₀ p f M'
                  theorem Submodule.restrictScalars_localized'_smul {R : Type u_1} (S : Type u_2) {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid N] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (I : Submodule R R) (N' : Submodule S N) :
                  theorem Submodule.localized'_smul {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (I : Submodule R R) :
                  localized' S p f (I M') = localized' S p (Algebra.linearMap R S) I localized' S p f M'
                  def Submodule.toLocalized₀ {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                  M' →ₗ[R] (localized₀ p f M')

                  The localization map of a submodule.

                  Equations
                    Instances For
                      @[simp]
                      theorem Submodule.toLocalized₀_apply_coe {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (c : M') :
                      ((toLocalized₀ p f M') c) = f c
                      def Submodule.toLocalized' {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                      M' →ₗ[R] (localized' S p f M')

                      The localization map of a submodule.

                      Equations
                        Instances For
                          @[simp]
                          theorem Submodule.toLocalized'_apply_coe {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (c : M') :
                          ((toLocalized' S p f M') c) = f c
                          @[reducible, inline]
                          noncomputable abbrev Submodule.toLocalized {R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :
                          M' →ₗ[R] (localized p M')

                          The localization map of a submodule.

                          Equations
                            Instances For
                              instance Submodule.isLocalizedModule {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                              noncomputable def Submodule.localizedEquiv {R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

                              The canonical isomorphism between the localization of a submodule and its realization as a submodule in the localized module.

                              Equations
                                Instances For
                                  theorem Submodule.localized₀_le_localized₀_of_smul_le {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P Q : Submodule R M} (x : p) (h : x P Q) :
                                  theorem Submodule.localized'_le_localized'_of_smul_le {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P Q : Submodule R M} (x : p) (h : x P Q) :
                                  localized' S p f P localized' S p f Q
                                  def Submodule.toLocalizedQuotient' {R : Type u_5} (S : Type u_6) {M : Type u_7} {N : Type u_8} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                                  M M' →ₗ[R] N localized' S p f M'

                                  The localization map of a quotient module.

                                  Equations
                                    Instances For
                                      @[reducible, inline]
                                      noncomputable abbrev Submodule.toLocalizedQuotient {R : Type u_5} {M : Type u_7} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

                                      The localization map of a quotient module.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem Submodule.toLocalizedQuotient'_mk {R : Type u_5} (S : Type u_6) {M : Type u_7} {N : Type u_8} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : M) :
                                          instance IsLocalizedModule.toLocalizedQuotient' {R : Type u_5} (S : Type u_6) {M : Type u_7} {N : Type u_8} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                                          noncomputable def localizedQuotientEquiv {R : Type u_5} {M : Type u_7} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

                                          The canonical isomorphism between the localization of a quotient module and its realization as a quotient of the localized module.

                                          Equations
                                            Instances For
                                              theorem LinearMap.ker_localizedMap_eq_localized₀_ker {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                                              theorem LinearMap.localized'_ker_eq_ker_localizedMap {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                                              theorem LinearMap.ker_localizedMap_eq_localized'_ker {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                                              noncomputable def LinearMap.toKerIsLocalized {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                                              (ker g) →ₗ[R] (ker ((IsLocalizedModule.map p f f') g))

                                              The canonical map from the kernel of g to the kernel of g localized at a submonoid.

                                              This is a localization map by LinearMap.toKerLocalized_isLocalizedModule.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem LinearMap.toKerIsLocalized_apply_coe {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) (c : (ker g)) :
                                                  ((toKerIsLocalized p f f' g) c) = f c
                                                  theorem LinearMap.toKerLocalized_isLocalizedModule {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :

                                                  The canonical map to the kernel of the localization of g is localizing. In other words, localization commutes with kernels.

                                                  theorem LinearMap.range_localizedMap_eq_localized₀_range {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                                                  theorem LinearMap.localized'_range_eq_range_localizedMap {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :

                                                  Localization commutes with ranges.