Documentation

Mathlib.Algebra.Order.Antidiag.Nat

Sets of tuples with a fixed product #

This file defines the finite set of d-tuples of natural numbers with a fixed product n as Nat.finMulAntidiag.

Main Results #

def Nat.finMulAntidiag (d n : ) :
Finset (Fin d)

The Finset of all d-tuples of natural numbers whose product is n. Defined to be when n = 0.

Equations
    Instances For
      @[simp]
      theorem Nat.mem_finMulAntidiag {d n : } {f : Fin d} :
      f d.finMulAntidiag n i : Fin d, f i = n n 0
      theorem Nat.finMulAntidiag_one {d : } :
      d.finMulAntidiag 1 = {fun (x : Fin d) => 1}
      theorem Nat.dvd_of_mem_finMulAntidiag {n d : } {f : Fin d} (hf : f d.finMulAntidiag n) (i : Fin d) :
      f i n
      theorem Nat.ne_zero_of_mem_finMulAntidiag {d n : } {f : Fin d} (hf : f d.finMulAntidiag n) (i : Fin d) :
      f i 0
      theorem Nat.prod_eq_of_mem_finMulAntidiag {d n : } {f : Fin d} (hf : f d.finMulAntidiag n) :
      i : Fin d, f i = n
      theorem Nat.finMulAntidiag_eq_piFinset_divisors_filter {d m n : } (hmn : m n) (hn : n 0) :
      d.finMulAntidiag m = {fFintype.piFinset fun (x : Fin d) => n.divisors | i : Fin d, f i = m}
      theorem Nat.image_apply_finMulAntidiag {d n : } {i : Fin d} (hd : d 1) :
      Finset.image (fun (f : Fin d) => f i) (d.finMulAntidiag n) = n.divisors
      theorem Nat.finMulAntidiag_existsUnique_prime_dvd {d n p : } (hn : Squarefree n) (hp : p n.primeFactorsList) (f : Fin d) (hf : f d.finMulAntidiag n) :
      ∃! i : Fin d, p f i
      theorem Nat.finMulAntidiag_three {n : } (a : Fin 3) (ha : a finMulAntidiag 3 n) :
      a 0 * a 1 * a 2 = n

      The following private declarations are ingredients for the proof of card_pair_lcm_eq.