Documentation

Mathlib.Algebra.Order.Module.Equiv

Linear equivalence for order type synonyms #

def toLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
β ≃ₗ[α] Lex β

toLex as a linear equivalence

Equations
    Instances For
      def ofLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
      Lex β ≃ₗ[α] β

      ofLex as a linear equivalence

      Equations
        Instances For
          @[simp]
          theorem coe_toLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
          (toLexLinearEquiv α β) = toLex
          @[simp]
          theorem coe_ofLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
          (ofLexLinearEquiv α β) = ofLex
          @[simp]
          theorem symm_toLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :
          @[simp]
          theorem symm_ofLexLinearEquiv (α : Type u_1) (β : Type u_2) [Semiring α] [AddCommMonoid β] [Module α β] :