Algebraic operations on upper/lower sets #
Upper/lower sets are preserved under pointwise algebraic operations in ordered groups.
theorem
IsUpperSet.smul_subset
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedMonoid α]
{s : Set α}
{x : α}
(hs : IsUpperSet s)
(hx : 1 ≤ x)
:
theorem
IsUpperSet.vadd_subset
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{x : α}
(hs : IsUpperSet s)
(hx : 0 ≤ x)
:
theorem
IsLowerSet.smul_subset
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedMonoid α]
{s : Set α}
{x : α}
(hs : IsLowerSet s)
(hx : x ≤ 1)
:
theorem
IsLowerSet.vadd_subset
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{x : α}
(hs : IsLowerSet s)
(hx : x ≤ 0)
:
theorem
IsUpperSet.smul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s : Set α}
{a : α}
(hs : IsUpperSet s)
:
IsUpperSet (a • s)
theorem
IsUpperSet.vadd
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{a : α}
(hs : IsUpperSet s)
:
IsUpperSet (a +ᵥ s)
theorem
IsLowerSet.smul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s : Set α}
{a : α}
(hs : IsLowerSet s)
:
IsLowerSet (a • s)
theorem
IsLowerSet.vadd
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{a : α}
(hs : IsLowerSet s)
:
IsLowerSet (a +ᵥ s)
theorem
Set.OrdConnected.smul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s : Set α}
{a : α}
(hs : s.OrdConnected)
:
(a • s).OrdConnected
theorem
Set.OrdConnected.vadd
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
{a : α}
(hs : s.OrdConnected)
:
(a +ᵥ s).OrdConnected
theorem
IsUpperSet.mul_left
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s t : Set α}
(ht : IsUpperSet t)
:
IsUpperSet (s * t)
theorem
IsUpperSet.add_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s t : Set α}
(ht : IsUpperSet t)
:
IsUpperSet (s + t)
theorem
IsUpperSet.mul_right
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s t : Set α}
(hs : IsUpperSet s)
:
IsUpperSet (s * t)
theorem
IsUpperSet.add_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s t : Set α}
(hs : IsUpperSet s)
:
IsUpperSet (s + t)
theorem
IsLowerSet.mul_left
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s t : Set α}
(ht : IsLowerSet t)
:
IsLowerSet (s * t)
theorem
IsLowerSet.add_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s t : Set α}
(ht : IsLowerSet t)
:
IsLowerSet (s + t)
theorem
IsLowerSet.mul_right
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s t : Set α}
(hs : IsLowerSet s)
:
IsLowerSet (s * t)
theorem
IsLowerSet.add_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s t : Set α}
(hs : IsLowerSet s)
:
IsLowerSet (s + t)
theorem
IsUpperSet.inv
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s : Set α}
(hs : IsUpperSet s)
:
theorem
IsUpperSet.neg
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
(hs : IsUpperSet s)
:
IsLowerSet (-s)
theorem
IsLowerSet.inv
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s : Set α}
(hs : IsLowerSet s)
:
theorem
IsLowerSet.neg
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s : Set α}
(hs : IsLowerSet s)
:
IsUpperSet (-s)
theorem
IsUpperSet.div_left
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s t : Set α}
(ht : IsUpperSet t)
:
IsLowerSet (s / t)
theorem
IsUpperSet.sub_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s t : Set α}
(ht : IsUpperSet t)
:
IsLowerSet (s - t)
theorem
IsUpperSet.div_right
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s t : Set α}
(hs : IsUpperSet s)
:
IsUpperSet (s / t)
theorem
IsUpperSet.sub_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s t : Set α}
(hs : IsUpperSet s)
:
IsUpperSet (s - t)
theorem
IsLowerSet.div_left
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s t : Set α}
(ht : IsLowerSet t)
:
IsUpperSet (s / t)
theorem
IsLowerSet.sub_left
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s t : Set α}
(ht : IsLowerSet t)
:
IsUpperSet (s - t)
theorem
IsLowerSet.div_right
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{s t : Set α}
(hs : IsLowerSet s)
:
IsLowerSet (s / t)
theorem
IsLowerSet.sub_right
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{s t : Set α}
(hs : IsLowerSet s)
:
IsLowerSet (s - t)
Equations
Equations
Equations
Equations
Equations
Equations
Equations
instance
UpperSet.instVAdd
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Equations
@[simp]
@[simp]
@[simp]
theorem
UpperSet.coe_mul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : UpperSet α)
:
@[simp]
theorem
UpperSet.coe_add
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : UpperSet α)
:
@[simp]
theorem
UpperSet.coe_div
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : UpperSet α)
:
@[simp]
theorem
UpperSet.coe_sub
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : UpperSet α)
:
Equations
instance
UpperSet.instAddAction
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Equations
Equations
instance
UpperSet.addCommSemigroup
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Equations
instance
UpperSet.instCommMonoid
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
:
CommMonoid (UpperSet α)
Equations
instance
UpperSet.instAddCommMonoid
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
instance
LowerSet.instVAdd
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Equations
@[simp]
theorem
LowerSet.coe_mul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : LowerSet α)
:
@[simp]
theorem
LowerSet.coe_add
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : LowerSet α)
:
@[simp]
theorem
LowerSet.coe_div
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : LowerSet α)
:
@[simp]
theorem
LowerSet.coe_sub
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : LowerSet α)
:
Equations
instance
LowerSet.instAddAction
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Equations
Equations
instance
LowerSet.addCommSemigroup
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Equations
instance
LowerSet.instCommMonoid
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
:
CommMonoid (LowerSet α)
Equations
instance
LowerSet.instAddCommMonoid
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
upperClosure_smul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s : Set α)
(a : α)
:
@[simp]
theorem
upperClosure_vadd
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s : Set α)
(a : α)
:
@[simp]
theorem
lowerClosure_smul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s : Set α)
(a : α)
:
@[simp]
theorem
lowerClosure_vadd
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s : Set α)
(a : α)
:
theorem
mul_upperClosure
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : Set α)
:
theorem
add_upperClosure
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : Set α)
:
theorem
mul_lowerClosure
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : Set α)
:
theorem
add_lowerClosure
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : Set α)
:
theorem
upperClosure_mul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : Set α)
:
theorem
upperClosure_add
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : Set α)
:
theorem
lowerClosure_mul
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : Set α)
:
theorem
lowerClosure_add
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : Set α)
:
@[simp]
theorem
upperClosure_mul_distrib
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : Set α)
:
@[simp]
theorem
upperClosure_add_distrib
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : Set α)
:
@[simp]
theorem
lowerClosure_mul_distrib
{α : Type u_1}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
(s t : Set α)
:
@[simp]
theorem
lowerClosure_add_distrib
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
(s t : Set α)
: