Documentation

Mathlib.AlgebraicGeometry.Cover.Over

Covers of schemes over a base #

In this file we define the typeclass Cover.Over. For a cover 𝒰 of an S-scheme X, the datum 𝒰.Over S contains S-scheme structures on the components of 𝒰 and asserts that the component maps are morphisms of S-schemes.

We provide instances of 𝒰.Over S for standard constructions on covers.

@[reducible, inline]

Bundle an S-scheme with P into an object of P.Over ⊤ S.

Equations
    Instances For
      @[reducible, inline]
      abbrev AlgebraicGeometry.Scheme.Hom.asOverProp {P : CategoryTheory.MorphismProperty Scheme} {X Y : Scheme} (f : X.Hom Y) (S : Scheme) [X.Over S] [Y.Over S] [f.IsOver S] {hX : P (X S)} {hY : P (Y S)} :
      X.asOverProp S hX Y.asOverProp S hY

      Bundle an S-morphism of S-scheme with P into a morphism in P.Over ⊤ S.

      Equations
        Instances For

          A P-cover of a scheme X over S is a cover, where the components are over S and the component maps commute with the structure morphisms.

          Instances

            The pullback of a cover of S-schemes along a morphism of S-schemes. This is not definitionally equal to AlgebraicGeometry.Scheme.Cover.pullbackCover, as here we take the pullback in Over S, whose underlying scheme is only isomorphic but not equal to the pullback in Scheme.

            Equations
              Instances For

                A variant of AlgebraicGeometry.Scheme.Cover.pullbackCoverOver with the arguments in the fiber products flipped.

                Equations
                  Instances For

                    The pullback of a cover of S-schemes with Q along a morphism of S-schemes. This is not definitionally equal to AlgebraicGeometry.Scheme.Cover.pullbackCover, as here we take the pullback in Q.Over ⊤ S, whose underlying scheme is only isomorphic but not equal to the pullback in Scheme.

                    Equations
                      Instances For
                        instance AlgebraicGeometry.Scheme.instOverObjPullbackCoverOverProp {P : CategoryTheory.MorphismProperty Scheme} (S : Scheme) [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] {X W : Scheme} (𝒰 : Cover P X) (f : W X) [W.Over S] [X.Over S] [Cover.Over S 𝒰] [Hom.IsOver f S] {Q : CategoryTheory.MorphismProperty Scheme} [Q.HasOfPostcompProperty Q] [Q.IsStableUnderBaseChange] [Q.IsStableUnderComposition] (hX : Q (X S)) (hW : Q (W S)) (hQ : ∀ (j : 𝒰.J), Q (𝒰.obj j S)) (j : 𝒰.J) :
                        ((Cover.pullbackCoverOverProp S 𝒰 f hX hW hQ).obj j).Over S
                        Equations

                          A variant of AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp with the arguments in the fiber products flipped.

                          Equations
                            Instances For
                              instance AlgebraicGeometry.Scheme.instOverObjPullbackCoverOverProp' {P : CategoryTheory.MorphismProperty Scheme} (S : Scheme) [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] {X W : Scheme} (𝒰 : Cover P X) (f : W X) [W.Over S] [X.Over S] [Cover.Over S 𝒰] [Hom.IsOver f S] {Q : CategoryTheory.MorphismProperty Scheme} [Q.HasOfPostcompProperty Q] [Q.IsStableUnderBaseChange] [Q.IsStableUnderComposition] (hX : Q (X S)) (hW : Q (W S)) (hQ : ∀ (j : 𝒰.J), Q (𝒰.obj j S)) (j : 𝒰.J) :
                              ((Cover.pullbackCoverOverProp' S 𝒰 f hX hW hQ).obj j).Over S
                              Equations
                                instance AlgebraicGeometry.Scheme.instOverObjBind {P : CategoryTheory.MorphismProperty Scheme} (S : Scheme) [P.IsStableUnderComposition] {X : Scheme} (𝒰 : Cover P X) (𝒱 : (x : 𝒰.J) → Cover P (𝒰.obj x)) [X.Over S] [Cover.Over S 𝒰] [(x : 𝒰.J) → Cover.Over S (𝒱 x)] (j : (𝒰.bind 𝒱).J) :
                                ((𝒰.bind 𝒱).obj j).Over S
                                Equations
                                  instance AlgebraicGeometry.Scheme.instOverBind {P : CategoryTheory.MorphismProperty Scheme} (S : Scheme) [P.IsStableUnderComposition] {X : Scheme} (𝒰 : Cover P X) (𝒱 : (x : 𝒰.J) → Cover P (𝒰.obj x)) [X.Over S] [Cover.Over S 𝒰] [(x : 𝒰.J) → Cover.Over S (𝒱 x)] :
                                  Cover.Over S (𝒰.bind 𝒱)
                                  Equations